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Both engineered and biological transportation networks face trade-offs in

their design. Network users desire to quickly get from one location in the

network to another, whereas network planners need to minimize costs in

building infrastructure. Here, we use the theory of Pareto optimality to

study this design trade-off in the road networks of 101 cities, with wide-ran-

ging population sizes, land areas and geographies. Using a simple one

parameter trade-off function, we find that most cities lie near the Pareto

front and are significantly closer to the front than expected by alternate

design structures. To account for other optimization dimensions or con-

straints that may be important (e.g. traffic congestion, geography), we

performed a higher-order Pareto optimality analysis and found that most

cities analysed lie within a region of design space bounded by only four

archetypal cities. The trade-offs studied here are also faced and well-opti-

mized by two biological transport networks—neural arbors in the brain

and branching architectures of plant shoots—suggesting similar design prin-

ciples across some biological and engineered transport systems.
1. Introduction
Networks face trade-offs between conflicting goals. In engineering, this trade-

off is often between the performance of the network, benefiting individual

users, and the costs of constructing the network. Users desire to transport a

payload, such as information or a physical object, at an unlimited capacity

and at the fastest speed possible. Conversely, a network fulfilling these goals

is expensive to construct, consuming significant resources, such as money,

space and energy. Thus, network designers seek to build networks that are

efficient, maximizing benefits provided by allocated resources.

Nearly all engineered networks are subject to this trade-off. For example, a

data network, like the Internet, would need dedicated links between every pair

of users to achieve maximum performance, since high bandwidth and low

latency are desired by the user. To the network provider, however, the

number and length of physical links impose major costs [1,2]. Similar trade-

offs are also faced by water pipeline networks [3], power grids [4] and wireless

sensor networks [5]. In practice, most networks are not likely to be optimally

efficient due to constraints (e.g. mountains that necessitate a circuitous path)

or difficulty in modifying or pruning certain parts of the network in response

to changing user demands. There may also be other factors to optimize in the

network, such as reliability and robustness [2].

Here, we study travel paths in metropolitan area road networks, where

users in suburban locations desire to commute downtown. We make the

following contributions:

(1) We collected travel paths for 11 615 users over 101 cities worldwide, with

metro area populations ranging from 7000 to 38 million, with city proper

land areas ranging from 5 to 16 400 km2, and with a variety of geographical

constraints, including rivers and bays, mountainous terrain and geopolitical

boundaries (figure 1a).
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Figure 1. Pareto optimality analysis of travel paths. (a) Travel paths from randomly distributed points in Beijing to a central downtown location (Tiananmen Square),
as provided by Google Maps. (b) The Pareto front that optimally trades-off construction costs (a ¼ 1) and travel distance (a ¼ 0). The variable a defines the
relative weights between the two competing goals. (c) Example cities that lie close (Ithaca) and far (Abbottabad) to the Pareto front. The distance to the Pareto front
is calculated using a variable e . Cities with e . 1 require greater construction costs and/or travel distance than a Pareto-optimal city. This diagram is only to
illustrate how e can vary across cities; in reality, different road networks likely have different Pareto fronts. (Online version in colour.)
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(2) We study the trade-off between travel distance (user per-

formance) and total network length (road cost). We use a

network design algorithm to generate near-Pareto opti-

mal topologies that balance between these two

competing objectives based on a single parameter (a)

denoting how the two objectives are weighted against

each other. We find that many, though not all, cities lie

near the Pareto front with a surprisingly tight range of

a values. This indicates similar balancing of the two

objectives across cities, despite the broad diversity in

population, city size and region.

(3) We find that when three additional time-related optimiz-

ation measures (speed, congestion and number of

manoeuvres) are added to travel distance and network

length, the dimensionality of the data increases by only

one, i.e. most cities lie within a three-dimensional sub-

space. The polytope that bounds all cities within this

subspace has four corners, representing four archetypical

cities: Jerusalem, Juba, Amarillo and Delhi. These cities

formed extremum in trade-offs, some favouring optimiz-

ing network length (Jerusalem and Juba), optimizing

travel distance (Amarillo and Delhi) and optimizing

travel speed (Amarillo), while also performing poorly

in handling congestion (Delhi) and minimizing travel dis-

tances (Jerusalem). Our results suggest a certain

simplicity to the structure of global travel paths that

have emerged through various growth processes.

We conclude by discussing analogous trade-offs faced in

biological networks, and how the study of one may shed

light on the other.
2. Related work
Prior work has largely focused on analysing the structure of

road networks as graphs, or on developing highly parameter-

ized models of traffic flow and routing. Our focus instead is

on quantifying the trade-off between user performance and

network length in road structures using travel path data

from numerous cities.

2.1. Analysing road structures as graphs
Graphs are a common abstraction used to analyse the struc-

ture of road networks [6,7]. Such analyses have shown, for
example, that roads form scale-free networks [8] and display

self-similarity [9]. Others have studied the hierarchy of road

networks, ranging from slow residential streets with many

intersections to large controlled-access highways. These

works studied the structural properties (e.g. ‘beltness’, ‘tree-

ness’, etc.) used in each layer of the hierarchy, and the

interfaces between layers [7]. Prior works have also studied

how to optimally redesign existing road structures by inte-

grating data on connectivity, broad geography and road

usage statistics [10]. However, there are many external factors

that affect the design and routing of roads, especially on a

sub-kilometre scale. This includes local terrain (small hills,

ravines and subsurface geology) [11], environmental con-

cerns (noise, pollution), land acquisition costs, and political

factors [12], among others. While broad scale geography, at

1 km resolution, has been analysed to determine where

roads should be built [13], it is difficult to gather the data

necessary to generate a representative model on a city level.

In contrast to these works, we derive a measure to

describe the network not in a strictly topological or structural

sense, but rather in terms of a user-network trade-off. The

focus of this trade-off is on travel paths, which describe

how the underlying roads are used to get from one location

in the network to another, while implicitly taking road type

into account. In contrast to previous studies that only study

one road type, or that treat all road types as identical [7–

9,14,15], our travel paths consider residential streets, central

arteries and freeways together; we are also able to study

more rural and lesser-developed cities, which may not have

larger types of roads. Previous studies using travel paths

have focused on morphological features, such as ‘inness’

[16], but have not studied the user-network trade-off. The

user optimality of small-scale non-road networks has been

explored before [17], but has not been applied to the conti-

nuum of network topologies between user optimal and

network optimal configurations.

2.2. Models of traffic flow and routing
There are many features important to road travel that are not

captured by static analysis of road graphs. To get from one

location in the network to another, a user will often travel

on different types of roads, such as surface streets, arteries

and highways. Determining realistic travel paths given a

map is thus often done by either applying a routing
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algorithm [18], or by collecting empirical data [19]. The

decision process for a user to select between these types of

roads has been modelled in terms of a continuous flow on

a discrete network [20], or as an empirical factor based on

probabilistic processes [18]. Accurate routing algorithms

must also be privy to other roadway characteristics such as

intersection types (e.g. a two-way versus a four-way stop)

and utilization (e.g. unprotected turns against traffic), and

the effects of varying capacity, speed limits and traffic con-

gestion. However, these factors can vary significantly based

on local environmental factors and may not be apparent

from large-scale mapping data [21].

Routing algorithms are further complicated in that a user

would like to reach the destination in both the fastest time

and shortest travel distance possible. When this is not poss-

ible, users are willing to trade-off some additional distance

travelled for a reduction in travel time, as exhibited by drivers

travelling a longer route to avoid traffic congestion and delay at

intersections [22]. In routing algorithms, this trade-off is

described by a variable equal to the assumed cost per minute

of travel time divided by the assumed cost per kilometre tra-

velled (sometimes called the cost index [23]). Other studies

have analysed how travel times can be decreased if vehicles

were routed using centrally determined, system-optimal

paths rather than user-optimal paths [24], whereas our more

realistic scenarios assume ordinary greedy driver behaviour.

Rather than developing a complex traffic model and rout-

ing algorithm for each city, or limiting our study to certain

model structures [20], we used the routing algorithms devel-

oped by Google Maps [25]. Though we treat Google Maps as

a ‘black box’, the travel paths suggested by Google Maps are

followed by millions of users every day and are generally

regarded as accurate. Notably, Google Maps has a traffic con-

gestion and travel time model based on crowdsourced

empirical data. The unmatched scale and quality of Google

Maps allows us to sample long routes over hundreds of

square kilometres, across 101 global cities, in a uniform

manner and more accurately than theoretical models.
2.3. Relationship to biological network design and
routing

Our study is also motivated by similar network design trade-

offs that occur in biology. For example, Conn et al. [26]

showed that plant architectures can also be viewed as trans-

port networks, used to shuttle nutrients from one organ of

the plant to another. These networks also must straddle

between optimizing for fast nutrient transport (user perform-

ance) while also balancing for costs in building the

architecture (network cost). Similarly, Budd et al. [27] and

Cuntz et al. [28] showed that neural arbors (dendrites and

axons) can also be viewed as transport networks used to

shuttle information (action potentials or signals) from one

neuron to another. These networks must balance between

the distance or time required to route the signal along the

arbor (user performance) versus the amount of wiring

needed to realize a specific topology given a space-

constrained brain (network cost). Prior work has suggested

that both of these systems have evolved mechanisms to gen-

erate Pareto-optimal topologies [29]. Our goal here is to test

these ideas in human engineered road networks that have

likely evolved using different mechanisms.
2.4. Additional work in Pareto optimality of complex
networks

Seoane and Sole [30,31] study a trade-off between network

efficiency and cost using Pareto optimization, and they

study how these competing forces can lead to phase tran-

sitions in design space, also called network morphospace

[32]. Our work studies a specific example of this morpho-

space as instantiated by travel paths in cities. Moses et al.
[33] study trade-offs between minimizing delivery time and

energy dissipation required for delivery of a resource, and

they find scaling principles between the two in vascular

networks and computer chip designs. Thus, while the idea

of studying network design trade-offs across engineered

and biological contexts is not new, our study instantiates

these ideas in a specific domain of single-source transport

systems.
3. Results
First, we describe a framework based on the theory of Pareto

optimality to study user-performance trade-offs in road net-

work travel paths. Second, we analyse travel paths in 101

cities and show that most fall significantly closer to the

Pareto front than expected with surprisingly little variability

in how different cities trade-off competing objectives. Third,

we analyse the travel paths using a higher-order Pareto optim-

ization and show that all cities can be bounded within a small

region of trait space, exemplified by four archetype cities.

3.1. A framework for quantifying user-network trade-
offs in road structures

The idea of the Pareto front is often used in engineering and

economics to find optimal trade-offs between competing

objectives [34–36]. This theory has had a long history of

being used to study trade-offs in biological systems [37–

40], for which evolution and natural selection are hypoth-

esized to optimize biological function with respect to

competing demands. Intuitively, consider two competing

objectives, o1 and o2. If some solution a1 outperforms solution

a2 on both objectives, then a1 is said to ‘dominate’ a2, leading

to a2 being removed from the population. Repeating this

argument for all possible solutions, the only solutions that

remain lie along the Pareto front of o1 and o2. This front is

defined as the set of solutions where increasing the perform-

ance on one objective necessarily results in a loss in

performance on the other objective (figure 1b)

In our case, we are given as input a set of points,

P ¼ {p1, p2, . . . , pn}, corresponding to the 2D locations of n
random users in a city; and a root point r, corresponding to

the location of downtown, where the users seek to travel to

(Methods). Our goal is to output a tree G ¼ (V, E), where

V ¼ P < {r}, and E are the set of edges connecting the

nodes in V.

The first objective is to minimize the road cost (network

length), which is equal to the sum of all the edge lengths:

C(G) ¼
X

(u,v)[E

d(u, v), (3:1)

where d(u, v) is the Euclidean distance between u and v. Ide-

ally, all points in P would have the same position relative to

downtown for all cities. This was not possible because some
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points for a given city may lie in bodies of water or uninhab-

ited areas (Methods). We thus normalized C(G) by the mean

straight-line distance between r and each pi [ P.

The second objective is to minimize the user travel dis-

tances, which is equal to the sum of the distances from

each point to the root (downtown):

T(G) ¼
X

i

l(G, pi, r), (3:2)

where l(G, pi, r) is the distance to travel from pi to r along the

edges in G. Similar to the reasoning above, T(G) was normal-

ized by the sum of straight-line distances.

Both of these measures are clearly approximations of

actual performance and cost. For example, network length

is one aspect of road costs, but there are other factors, as

well, including the number of lanes and the terrain. Travel

distance itself can be determined fairly accurately; however,

users also assign value to minimizing travel time. Distance

and time are often correlated—the shortest path is often the

fastest path—but there are factors such as roadway speeds,

traffic congestion and intersection delays. We consider these

and other factors in our higher-order Pareto analysis dis-

cussed later.

The objectives of minimizing network length and mini-

mizing travel distance are at odds with one another. For

example, minimizing network length is achieved by a mini-

mum spanning tree of the graph (or a Steiner tree, if branch

points are allowed). This solution, however, would not be

very attractive from a user’s perspective, who may have to

travel long distances to get to downtown. On the other

hand, minimizing travel distance is achieved using a ‘satel-

lite’ tree, where the root is connected via a straight line to

each user location. However, this solution would not be

very attractive from a network cost perspective since it

would require significant resources to build. These two

cases bound possible networks: there can be no shorter

travel distance than the straight-line paths of the satellite

tree, nor can network costs be lower than the Steiner tree.

One natural way to define an optimization function that

incorporates these two objectives together is to solve:

minimize T(G)

subject to

C(G) , B, (3:3)

where B is a budget on the total length of the network. This

formulation sets the network length to be a hard constraint.

To soften this constraint, we seek to solve:

minimize aC(G)þ (1� a)T(G), (3:4)

where 0 � a � 1 is a parameter (similar to the Lagrange mul-

tiplier) that controls how much weight or priority should be

placed on each objective. For example, if a � 0, then the net-

work promotes minimizing travel distance and would look

satellite-like. If a � 1, then the network promotes minimizing

total length and would look closer to a spanning tree. Impor-

tantly, this parameter a provides a single number representing

how a network trades-off these two objectives.

The Pareto front consists of solutions to equation (3.4) for

all values of a [ [0, 1]. This front is also bounded by the two

extremal networks, the satellite and a minimum spanning

tree. The objective in equation (3.4) is clearly NP-hard, as it

equals the Steiner tree problem for a ¼ 1. We, therefore, use
an empirically near-optimal greedy algorithm [26] to com-

pute the Pareto front (Methods). Each city has its own

Pareto front defined by r and P (its set of n user locations).

The use of a single downtown destination allowed us to

examine travel paths towards a primary location in a city.

Large cities may have multiple population centres, and our

framework can similarly be used to analyse these polycentric

structures.

3.2. Comparison to baseline networks
To establish a baseline to compare how close a city lies to the

Pareto front, we compared with two baseline architectures.

The first baseline, Random, creates a random spanning tree

using the points P and r as input and is used to test whether

Pareto optimality can be achieved trivially. The second base-

line, PrefAttach, uses the Barabasi–Albert model [41] to build

a tree on the input points. This generative graph model starts

with two random nodes connected by an edge. Then, in each

iteration of the algorithm, it connects a new node to one exist-

ing node biased by the degree of the existing node. This results

in a ‘rich get richer’ scale-free tree, with many potential hubs,

as are commonly found in many transport networks.

3.3. Quantifying optimality, i.e. the distance to the
Pareto front

For each city, we computed both its value of e (how far away

it is to the Pareto front) and a (where it lies on the scaled

Pareto front).

Given the network G of a city, we can compute its values

for x ¼ C(G) and y ¼ T(G). Call this point pG ¼ (x, y). To

determine how far away pG lies from the Pareto front, we

scaled the Pareto front until it intersected with pG, and we

then used the amount of scaling required as a measure of

optimality. Specifically, let the Pareto front be defined by a

set of points, f(x1, y1), (x2, y2), . . ., (xk, yk)g, where (xi, yi) cor-

responds to the optimal travel distance and total length of the

network for ai. To scale the front, we multiply each (xi, yi)

pair by a small value e . 1 and test if this new Pareto front

intersects with pG. We keep increasing the value of e until

it intersects with pG. The larger the value of e , the further

away the network lies to the Pareto front (figure 1c). If the

network lies exactly on the Pareto front, its e ¼ 1.0.

This scaling allows a direct interpretation of e: a city with

e ¼ 1.5 imposes the same road length and travel distance as a

Pareto-optimal city with the points P with radius 1.5 times

farther from the root. This is more explanatory than comput-

ing the Euclidean distance (in kilometres) from pG to the

closest point on the Pareto curve, since this distance combines

two indirectly related lengths (network length and travel dis-

tance). Our method determines the Pareto trade-off a that

results in the smallest e, in contrast to other methods, such

as the one utilized by Gastner et al. [17] which strictly

assumes a ¼ 0.

3.4. Using Google Maps to infer travel paths in a city
We used Google Maps to collect travel paths for 11 615 users in

101 global cities. These cities spanned different geographical

regions, sizes, ages and levels of economic development. For

example, cities had metropolitan area populations ranging

from 7000 (Great Barrington, MA, USA) to 38 million (Tokyo,

Japan), and had city land areas ranging from 5 km (Byblos,
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Lebanon) to 16 400 km (Beijing, China). The oldest city (Byblos,

Lebanon) has been inhabited for 7000 years, and we also

included newly built cities, such as Brasilia, Brazil and Abuja,

Nigeria, (founded 1960 and 1984, respectively). The diversity

of city features considered here makes this dataset a strong

benchmark for studying any principle of travel paths.

For each city, we selected n ¼ 115 random locations (P),

which each had a uniformly distributed random 3608 azi-

muth and radius r [ [5, 30] km from a centrally located

point (downtown) r. The point r was in the central business

district of the city, most often a city hall or central monument.

We then obtained the travel paths from each pi [ P to r for

every city. To compute the network length C(G), we

formed a tree G by merging all paths and deleting overlap-

ping segments, then summing the lengths of all the edges.

To compute the travel distance T(G), we summed the lengths

of all 115 travel paths (Methods).
3.5. Other objectives of interest
Google Maps’ suggested travel paths incorporate factors that

we do not explicitly try to optimize with our greedy algor-

ithm, including time spent waiting at intersections, speed

limits, and traffic congestion. As discussed previously, as

opposed to developing detailed and highly parameterized

routing and road construction models, our goal is to use net-

work length and travel distance as a proxy for construction
costs and travel times, to determine how much these two

simple factors alone dictate the structure of travel paths.

Later, we also use a higher-order Pareto optimality technique

to incorporate a number of these other factors, including

traffic congestion and travel time.

3.6. Are travel paths in city road networks close to
being Pareto optimal?

For each city, we used as input the locations of the n random

points P in the city, and the location of downtown (r). We

used the greedy algorithm to generate a set of Pareto-optimal

trees for this city by varying a [ [0, 1]. We then computed

the network length and travel distance for the actual city’s

road network and assessed how far the city was from the

Pareto front (e). Using the same set of points, we also com-

puted the distance to the Pareto front for two baseline

networks (Random and PrefAttach, averaged over 1000

trees) to assess significance.

We found that the travel paths in every city were closer to

the Pareto front than the baseline networks (figure 2a). For

example, the distance to the Pareto front for Beijing was

e ¼ 1.36, compared to 3.82 and 7.47 for PrefAttach and

Random, respectively. This indicates that achieving the

level of Pareto optimality achieved by the city road network

is not trivial. This also suggests that despite the diverse con-

straints faced by actual road topologies compared to our
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graph-theoretic algorithm, most cities still performed better

than baseline algorithms (Random, PrefAttach), which did

not face such constraints.

We observed a range of e values across the 101 cities, indi-

cating that some cities were closer to the Pareto front than

others (figure 2b). For example, Houston was relatively

close to the Pareto front (e ¼ 1.26), whereas Abbottabad

was much further away (e ¼ 1.87), and Melbourne was in

between (e ¼ 1.40). The topology of the travel paths of

these cities was also quite diverse (figure 2c). For example,

Fresno (e ¼ 1.21) has many straight-lined paths indicative of

a very grid-like topology, whereas Abbottabad (e ¼ 1.87)

has many jagged edges due to the mountainous region.

Later, we study the effect of other city attributes (such as

geography and land area) on e.

The overall range of e values was limited (figure 3b); the

mean �e ¼ 1:40, with a small variance s2
e ¼ 0:0175. This indi-

cates that most cities were within a relatively narrow band

of optimality, despite the diversity of cities analysed.
3.7. Where near the Pareto front do cities tend to lie?
Next, we analysed where near the Pareto front the travel

paths from each city lie. The smaller the value of a, the

more the travel paths look like the satellite tree, and the

larger the a, the more the paths resemble a spanning tree.

We observed a ranging from a ¼ 0.57 (Reykjavik), which

favoured minimizing network length to a ¼ 0.14 (Ithaca),

which minimized travel distance (figure 2d ). The values of

a were all less than 0.5, except for Reykjavik (mean
�a ¼ 0:243, with variance s2
a ¼ 0:0062; figure 3a). This again

suggests that similar trade-offs between travel distance and

network length are made by these diverse cities.

3.8. Do other city features correlate with Pareto
optimality?

Here, we explore how e (distance to the Pareto front) and a

(trade-off ) values for each city vary with three types of city

measures: (i) city demographics, including metropolitan

area population, age of the city and geographical region; (ii)

traffic measures from Google Maps for each of our travel

paths, including average number of manoeuvres (turns,

merges, etc.), average speed with and without traffic, average

travel time with and without traffic, and the traffic slowdown

factor (the ratio of speed with traffic over speed without traf-

fic); and (iii) additional traffic measures that are not specific to

our travel paths but rather to the city as a whole. These

measures are collected from the 2016 INRIX Global Traffic

Scorecard [42]. The INRIX data were only available for 46

of the 101 cities and included peak hours spent in congestion

(relevant for a rush-hour commuter), percentage of time

spent in congestion (an overall congestion index using con-

gestion rates weighted to account for the typical driver and

a city’s average journey times), and an overall ranking of

cities (by peak hours spent in congestion, where a rank of 1

signifies the worst).

We found significant positive correlations between e and

the average number of manoeuvres and the travel time with

and without traffic (table 1). This lends credence to our



Table 1. Pearson correlation coefficient (r) and p-value for a and e versus city attributes. Significant correlations are shown in italics. Attributes that are
significant after a Bonferroni correction (n ¼ 13) are denoted with an asterisk.

a e

attribute r p-value r p-value

population 2 0.216 0.0309 0.051 0.6162

area 0.040 0.6921 0.189 0.0611

age 2 0.212 0.0331 0.180 0.0712

average number of manoeuvres 2 0.071 0.4850 0.381 ,0.0001*

average speed 0.119 0.2369 2 0.116 0.2512

average speed in traffic (s) 0.156 0.1183 2 0.123 0.2212

average time 0.071 0.4834 0.485 ,0.0001*

average time in traffic 0.006 0.9517 0.457 ,0.0001*

traffic slowdown factor 0.260 0.0089 2 0.047 0.6438

INRIX hours spent in congestion 2 0.081 0.5914 0.143 0.3433

INRIX congestion index 2 0.079 0.6041 0.188 0.2102

INRIX all cities congestion rank 0.007 0.9619 2 0.372 0.0109

INRIX percentage of time in congestion 2 0.077 0.6119 0.451 0.0016*
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model, showing that cities that were further from the Pareto

front yielded longer travel times and more manoeuvres per

travel path. We also found significant, albeit slightly

weaker, correlations between e and the INRIX congestion

rank and per cent time in congestion, which similarly

suggests that cities further away from the Pareto front are

more susceptible to traffic jams.

For a, there was a weak correlation with population and

age (table 1), suggesting that smaller and younger cities are

more satellite in nature. Furthermore, the weak correlation

of a with the traffic slowdown factor suggests that the more

satellite-tree-like a city is, the greater effect traffic congestion

has. Other studies have found relationships with travel

miles and gross domestic product [43].

Next, we studied how a and e vary according to regional

differences (figure 3c,d ). For each region, we performed a

Kolmogorov–Smirnov test between the cities in that region

and the cities in all other regions, to test if the region had a

significantly different distribution of a or e values compared

to the rest of the world. For e , we found that the Middle East

had significantly larger values of e (i.e. was more sub-

optimal) compared to the rest of the world (p ¼ 0.002),

whereas North America and Africa had slightly lower

values of e (p ¼ 0.051 and p ¼ 0.063, respectively). For a,

we find no significant differences between regions.

Thus, terrain appears to influence e more so than a. The

eight cities with the highest values of e, specifically, Abbotta-

bad (e ¼ 1.87), Jerusalem (e ¼ 1.80), Byblos (e ¼ 1.72),

Medellin (e ¼ 1.68), Cusco (e ¼ 1.67), Rio de Janeiro (e ¼

1.66), Caracas (e ¼ 1.64) and Taipei (e ¼ 1.63), are all in

mountainous or hilly areas that require construction of wind-

ing roads (figure 2c). On the other hand, a number of the

lowest e cities are flat, namely Juba (e ¼ 1.15), Fresno (e ¼

1.21), Harare (e ¼ 1.21) and Kampala (e ¼ 1.22). This was in

contrast to a, where three of the 10 highest and three of the

10 lowest a cities were mountainous: Abbottabad (a ¼

0.35), Rio de Janeiro (a ¼ 0.39) and Cusco (a ¼ 0.41); Byblos

(a ¼ 0.1), Barcelona (a ¼ 0.13) and Ithaca (a ¼ 0.14).
The impact of terrain on Pareto trade-offs is further sup-

ported by a positive correlation between e and a, (r ¼
0.248, p ¼ 0.0131) indicating that cities that lie far from the

Pareto front also require more indirect travel. Obstacles that

raise the cost of construction and block direct paths, e.g.

mountainous regions, may cause this.

We also assessed how proximity to a large body of water

influenced transport efficiency in a city. Specifically, for each

city, we manually inspected its terrain and classified it as

being bordered by water (including being adjacent to oceans,

or near bays and major rivers), or otherwise. We found no sig-

nificant difference in the distributions of e nor a values for

cities near water versus otherwise (Kolmogorov–Smirnoff

test, p ¼ 0.510, 0.738 for e and a, respectively). In many

cases, this was because there was no need for the road network

to traverse the obstacle, e.g. the city was coastal. Examples

include Osaka (e ¼ 1.34) and Vancouver (e ¼ 1.35). Otherwise,

bridges enabled efficient connectivity over bays and rivers,

such as in San Francisco and London (both e ¼ 1.34), and

Portland, Oregon (e ¼ 1.37).

Overall, these results suggest that the closer a city lies to

the Pareto front, the shorter the travel times and the better

it deals with traffic congestion. Geography also imposes

some constraints, especially those cities in mountainous

regions. Interestingly, there was little effect of these city fea-

tures on a; the tight distribution of a (figure 3a) suggests

that the trade-off between total length and travel distance

used may be similar globally.

3.9. A higher-order Pareto front to further bound travel
path complexity

Many cities lie near the Pareto front; however, there were

some exceptions to this rule, indicating that other optimiz-

ation factors or constraints also influence travel path

structure. Ideally, there would be a simple way to incorporate

additional objectives (e.g. travel time, traffic congestion,

number of manoeuvres) into a joint optimization framework
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amenable to Pareto analysis. However, this would create sev-

eral more variables to parameterize, including weighing

factors among objectives. We are not aware of a theoretical

model that describes these trade-offs for studying travel

paths.

Instead, we leverage recent advances in Pareto optimality

that seek to find ‘archetypes’ by analysing the dimensionality

of traits of travel paths. Specifically, we used the PartTI

package [44] to analyse five traits of the 101 cities: travel dis-

tance, network length, average travel speed, traffic slowdown

factor (speed decrease due to traffic congestion), and number

of manoeuvres. The latter three traits were derived from our

Google Maps dataset (Methods). Overall, this generated a

matrix with 101 rows (cities) and five columns corresponding

to the five traits for each city.

PartTI performed a principal component analysis (PCA)

on the z-score normalized matrix, and then attempted to

enclose the 101 points in the reduced-dimensional space

with a minimum-volume simplex (an n-dimensional tri-

angle). We found that the cities in this five-dimensional

space were well bounded within a tetrahedral simplex in a
three-dimensional principal component subspace. This sim-

plex had an explained variance of 73.5% and contained 80

of 101 cities (figure 4). This three-dimensional subspace is

spanned by four corner points, or ‘archetypes’. These arche-

types represent extremal variations in travel path structures,

whose traits can reveal how the five different traits may be

weighed differently. They can also be viewed as a type of

‘dictionary’ that encodes the diversity of travel path struc-

tures across cities.

The four cities closest to the four archetypes were Amar-

illo, Jerusalem, Juba and Delhi (figure 4). These cities showed

different trade-offs with respect to their rankings of e , a and

s, a new variable representing the average speed in the pres-

ence of traffic (lower is worse). Amarillo had the fastest travel

speeds (highest s) and had the ninth lowest e (lying relatively

close to the Pareto front). Jerusalem, on the other hand, was

far from the Pareto front (second-worst e) and had relatively

slow traffic (low s), but had a high value of a, meaning it was

spanning-tree-like. Similarly, Delhi exhibited the absolute

slowest traffic, but in contrast to Jerusalem, had the eighth

lowest value of a, meaning it was satellite-like. Finally, Juba
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had the lowest value of e (very close to the Pareto front) with

the 10th highest value of a (spanning-tree-like), but showed

low speeds in traffic. We also used feature enrichment analysis

from the package, which similarly found that e and a were

properties statistically enriched near the archetypes (electronic

supplementary material, ParTI Feature Enrichment Analysis,

table S1).

Overall, our theoretical model found that travel paths

within many cities were nearly Pareto optimal with respect

to a trade-off between road length and travel distance;

when adding three additional time-related variables, the

Pareto space only increased by roughly one dimension.

Therefore, our archetype analysis showed that time may be

described as a single factor in the network.
 R.Soc.Interface
16:20190041
4. Discussion
We showed that travel paths in road networks provide trans-

port in a nearly Pareto optimal manner, with topologies that

trade-off network length versus travel distance. When also

including time-related measures, cities were bounded by

only four archetypical topologies, suggesting that the

design space of travel paths is encapsulated by a few canoni-

cal structures. The closer a city lies to the Pareto front the

shorter its travel times and less is the impact of traffic conges-

tion. Finally, despite wide variation in city features, we found

a very tight distribution of a values, suggesting that the bal-

ance between objectives across these cities was very similar,

and perhaps, universal. These measures may give light to

the objectives and cost functions that drive the formation

and evolution of travel paths in road networks.

We analysed a set of 101 cities, selected to represent a

broad range of population sizes, land areas and geographies,

to test the generality of this trade-off principle. The cities

selected varied in population by over four orders of magni-

tude, by land area by over three orders of magnitude, and

by age by over three orders of magnitude. While the analysis

of additional cities is possible via Google Maps, these cities

appeared generally representative of the diversity of land

structures in the world. We studied the effects of additional

features, such as population size and geography, on the

Pareto optimality of cities (table 1). Travel path structure,

however, may also be effected by other features, including

gross domestic product [43], culture or dominant mode of

transportation.

Our study was not meant to analyse all objectives of a

city-scale transport system. We focused on one important

aspect of city travel, which was in part motivated by similar

challenges faced by two biological transport systems, where

there is a single ‘city centre’ (analogous to a neuron’s soma

or a plant’s base) through which transport is organized.

However, our general framework could be extended to

study additional objectives, for example, those where users

seek to travel to multiple locations. In the extreme case,

where users desire fast transport from any location in the

city to any other, the satellite structure would be replaced

by a clique structure, which minimizes the distance between

any pair of nodes in a network.

There are two reasons why exact Pareto optimality may

be difficult to achieve by travel paths in city road networks.

First, road growth is typically ‘online’, where some set of

roads are initially built, and then, based on feedback and
demand, subsequent roads are built. This hampers optimality

because design decisions made earlier in time strongly con-

strain those that are made subsequently. Our Pareto front

generation algorithm, on the other hand, assumed that all

the information about which points to connect was provided

a priori. Thus, some difference in performance of ‘online’

versus ‘offline’ network design should be expected, and

future work should attempt to quantify this gap. Second,

road networks typically do not ‘prune’ the past; i.e. road net-

works rarely exhibit the abandonment of large stretches of

road. This can also affect optimality because past decisions

may no longer be as beneficial under current demands.

Despite these limitations, city networks have managed to

achieve a level of Pareto optimality that is significantly

higher than baseline networks.

Finally, our work was motivated by prior analyses of

Pareto-optimal transport in two biological structures, an

observation we sought to test here for a human engineered

system. The extent of Pareto optimality remains debated in

biology. For example, Barve & Wagner [45] show that meta-

bolic traits may have non-adaptive origins, and Valverde

et al. [46] suggest that ecological networks have traits that rep-

resent evolutionary spandrels. Thus, we do not expect that all

biological networks make Pareto-optimal trade-offs, and

understanding the evolutionary trajectories that gave rise to

these structures remains important.

However, at least two biological transport networks

demonstrate Pareto-optimal trade-offs. First, plant shoot

(above-ground) architectures can be viewed as transport net-

works, where the leaves are analogous to the locations P in

the city, and the base of the plant is considered downtown

(root, r). For plants, travel distance corresponds to a measure

of how efficiently nutrients (e.g. sugars) can be transported

along the branching architectures; network length measures

how much resources are required to build the architecture.

Conn et al. [26] showed that plant architectures for several

species are Pareto optimal under the same cost-performance

trade-off considered here. Second, neural branching arbors

(dendrites and axons) can also be viewed as transport net-

works used to transmit information from one neuron to

another. Here, the locations P correspond to the locations of

synapses, and the root corresponds to the cell soma. Travel dis-

tance corresponds to a measure of conduction delay, which

seeks to minimize the time required to transmit a signal from

one neuron to another; network length is a measure of arbor

wiring length, which is a commodity in space-constrained

brains [27,28]. On a higher level, it has been shown that mini-

mizing feedback latency, including transport times, is critical

for the performance of biological control systems such as bi-

pedal balance and locomotion [47,48]. Finally, there may also

be other biological transport networks constrained by these

principles, such as vascular networks that deliver oxygen

throughout the body [49–52], and other nutrient supply net-

works [53,54]. Thus, similar network design principles shape

the design of some biological and engineered structures.
5. Methods
5.1. Travel path data
We obtained travel path data from Google Maps via the Direc-

tions API [25]. Routing data for each travel path were

requested for Wednesday, 13 December 2017 at 12.00 noon
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local time, run on 5 December 2017, about one week in advance.

This allowed the routes to consider a moderate level of traffic,

while avoiding congestion found during rush hour. Addition-

ally, the future date meant one-time events, such as accidents,

were not considered. The destination point, downtown, was

the default destination for the city returned by Google Maps. If

a default was undefined (applicable to only approx. 10 cities),

downtown was manually chosen.

We attempted to use the same set of 120 origin points for every

city, with respect to distance and azimuth, however, certain paths

returned by Google Maps were unable to be routed, or clearly

unrepresentative of typical road travel patterns. This was because

the origin point was placed in an inaccessible or uninhabited

location, such as an island, body of water, or an area without

roads. In some of these cases, Google Maps attempted to snap

the origin point to ferries or to roads many kilometres away.

Thus, points were rejected if the snapping distance was greater

than p=120 � 2:6% of the distance from the point to downtown.

Additionally, if a ferry was required or the path had a length of

over 10 times the straight-line distance, the point was rejected as

well. We replaced rejected points with the next points from the

same random sequence. Finally, to remove outliers, the five long-

est paths were removed, leaving 115 total paths for each city.

The travel distance for each path was provided by the Google

Maps API. To determine the total length of the utilized road net-

work, all paths were merged. The API returns each path as a series

of latitude/longitude points, which are not identical across multiple

paths that share the same road. Therefore, we wrote an overlap

detection algorithm that considered points that were closer than

100 m to be sharing the same road, so the duplicate path section

between such points was removed. The length of the remaining sec-

tions were then summed to determine the network length.

The 120 origin points represented, on average, 1 point every

1.3 km2, which is smaller than the area of most neighbourhoods.

Thus, higher sampling density would likely select points within

similar neighbourhoods, which would have similar travel paths.

We also considered origin points located in a circle of radius 5, 15

and 30 km from downtown. We found that the a and e values for

these three datasets were well-correlated with the random set,

with Pearson correlations ra ¼ [0.46, 0.72, 0.61] and re ¼ [0.58,

0.91, 0.90] for radii of [5, 15, 30] km respectively, suggesting

that 120 origin points was adequate.

5.2. Greedy algorithm to generate a near-optimal
Pareto front

The algorithm used to generate the Pareto front (i.e. to minimize

equation (3.4) for a given value of a) was described in Conn et al.
[26], and a similar algorithm was used by Gastner et al. [17]. The

algorithm is initialized with just the root node in the tree. In each

step of the greedy algorithm, an edge is added that connects a

node outside the tree to a node within the tree that minimizes

equation (3.4). Steiner nodes may also be added along each edge
to offer more potential edges to consider in each step, at the

expense of longer running time. While this method is clearly not

optimal—as minimizing equation (3.4) is NP-hard—Conn et al.
[26] provide evidence that this method generates very close to opti-

mal trees and outperforms prior heuristics for this problem.

Our greedy algorithm does not generate the Pareto-optimal

front, as finding this front is an NP-hard problem [26]. However,

this algorithm has been shown effective for approximating the

Pareto front, and performs comparably to the optimal Steiner tree

fora ¼ 1. Other heuristics, for example, based on genetic algorithms

[55] and other graph-theoretic optimizations [56], were found to be

too slow and generally worst-performing, respectively, compared to

the greedyalgorithm [29]. Thus, while our greedy algorithm is effec-

tive in practice, finding near-optimal Pareto fronts for large point

sets and all values of a remains an open problem.

5.3. Archetype analysis and traffic data
Traffic data, used in both the correlation and archetype analysis,

was obtained from Google Maps. Estimated trip times, without

the impact of traffic, was returned with each travel path.

Where Google Maps had traffic data, the trip time including

the impact of traffic was obtained, using Google Maps’ conges-

tion model at the aforementioned 12.00 noon, local time.

Average speed was determined by the sum of all trip lengths

in a city divided by the sum of the trip times. The traffic slow-

down factor was the ratio of the sum of trip times without

traffic to that with traffic. Thus, 1 indicates no traffic, and 0.5

indicates speed halved on average due to traffic. Finally, the aver-

age number of manoeuvres per trip, as returned by Google

Maps, counted both turns, roundabout use, road forks, merges

and exits on ramps. Straight travel through highway inter-

changes were counted as a manoeuvre, but not straight travel

through surface street intersections [25].

For archetype analysis with the ParTI package [44], each

variable was first z-score normalized. The package calculated

the simplex using the PCHA algorithm, and the number of arche-

types was determined using the elbow method. The cities closest

to the archetypes were found in regards to the ‘2-norm of the

principal components.

Data accessibility. The data produced by the algorithms, demographic
information used, and downtown coordinates are provided as a
comma-separated value (CSV) file available as electronic supplemen-
tary material. The electronic supplementary material also lists the
same data in tabular format, as well as plots the Pareto trade-off
curves for all 101 cities. Source code is available at https://bit-
bucket.org/navlakha/city_pareto.
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Joppa L, Solé R. 2018 The architecture of mutualistic
networks as an evolutionary spandrel. Nat. Ecol. Evol. 2,
94 – 99. (doi:10.1038/s41559-017-0383-4)

47. Milton J, Cabrera JL, Ohira T, Tajima S, Tonosaki Y,
Eurich CW, Campbell SA. 2009 The time-delayed
inverted pendulum: implications for human balance
control. Chaos: an Interdiscipl. J. Nonlinear Sci. 19,
026110. (doi:10.1063/1.3141429)

48. Doyle JC, Csete M. 2011 Architecture, constraints,
and behavior. Proc. Natl Acad. Sci. USA 108,
15 624 – 15 630. (doi:10.1073/pnas.1103557108)

49. Newberry MG, Ennis DB, Savage VM. 2015 Testing
foundations of biological scaling theory using
automated measurements of vascular networks.
PLoS Comput. Biol. 11, e1004455. (doi:10.1371/
journal.pcbi.1004455)

50. Tekin E, Hunt D, Newberry MG, Savage VM. 2016
Do vascular networks branch optimally or
randomly across spatial scales? PLoS Comput.
Biol. 12, e1005223. (doi:10.1371/journal.pcbi.1005223)

51. Murray CD. 1926 The physiological principle of
minimum work: I. The vascular system and the cost
of blood volume. Proc. Natl Acad. Sci. USA 12,
207 – 214. (doi:10.1073/pnas.12.3.207)

52. Gafiychuk V, Lubashevsky I. 2001 On the principles
of the vascular network branching. J. Theor. Biol.
212, 1 – 9. (doi:10.1006/jtbi.2001.2277)

53. Dodds PS, Rothman DH, Weitz JS. 2001 Re-examination
of the ‘3/4-law’ of metabolism. J. Theor. Biol. 209,
9 – 27. (doi:10.1006/jtbi.2000.2238)

54. West GB, Brown JH, Enquist BJ. 1997 A general
model for the origin of allometric scaling laws in
biology. Science 276, 122 – 126. (doi:10.1126/
science.276.5309.122)

55. Chen G, Chen S, Guo W, Chen H. 2007 The multi-
criteria minimum spanning tree problem based
genetic algorithm. Inf. Sci. 177, 5050 – 5063.
(doi:10.1016/j.ins.2007.06.005)

56. Khuller S, Raghavachari B, Young N. 1995
Approximating the minimum equivalent digraph.
SIAM J. Comput. 24, 859 – 872. (doi:10.1137/
S0097539793256685)

http://dx.doi.org/10.1103/PhysRevE.73.026130
http://dx.doi.org/10.1080/00045608.2011.620505
http://dx.doi.org/10.1038/nature13717
http://dx.doi.org/10.1038/nature13717
http://dx.doi.org/10.1109/JSYST.2012.2183033
http://dx.doi.org/10.1109/JSYST.2012.2183033
http://dx.doi.org/10.1016/j.scs.2016.08.011
http://dx.doi.org/10.1038/s41467-017-02374-7
http://dx.doi.org/10.1088/1742-5468/2006/01/P01015
http://dx.doi.org/10.1088/1742-5468/2006/01/P01015
http://dx.doi.org/10.1088/1367-2630/16/1/013012
http://dx.doi.org/10.1016/0191-2615(94)90023-X
http://dx.doi.org/10.1016/j.trf.2007.01.001
http://dx.doi.org/10.1002/tee.v6.1
http://dx.doi.org/10.2514/3.20128
http://dx.doi.org/10.2202/1446-9022.1058
http://dx.doi.org/10.2202/1446-9022.1058
https://developers.google.com/maps/documentation/directions/intro
https://developers.google.com/maps/documentation/directions/intro
https://developers.google.com/maps/documentation/directions/intro
https://developers.google.com/maps/documentation/directions/intro
http://dx.doi.org/10.1016/j.cels.2017.06.017
http://dx.doi.org/10.1371/journal.pcbi.1000711
http://dx.doi.org/10.1371/journal.pcbi.1000711
http://dx.doi.org/10.1371/journal.pcbi.1000877
http://dx.doi.org/10.1098/rspb.2018.2727
http://dx.doi.org/10.1103/PhysRevE.92.032807
http://dx.doi.org/10.1098/rsif.2014.0881
http://dx.doi.org/10.1098/rstb.2015.0446
http://dx.doi.org/10.2307/1925895
http://dx.doi.org/10.2307/1925895
http://dx.doi.org/10.1126/science.1217405
http://dx.doi.org/10.1016/0022-5193(71)90097-X
http://dx.doi.org/10.1016/0022-5193(71)90097-X
http://dx.doi.org/10.1109/TCBB.2007.070203
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.1235823
http://dx.doi.org/10.1126/science.1235823
http://dx.doi.org/10.1038/nmeth.3254
http://dx.doi.org/10.1038/nature12301
http://dx.doi.org/10.1038/nature12301
http://dx.doi.org/10.1038/s41559-017-0383-4
http://dx.doi.org/10.1063/1.3141429
http://dx.doi.org/10.1073/pnas.1103557108
http://dx.doi.org/10.1371/journal.pcbi.1004455
http://dx.doi.org/10.1371/journal.pcbi.1004455
http://dx.doi.org/10.1371/journal.pcbi.1005223
http://dx.doi.org/10.1073/pnas.12.3.207
http://dx.doi.org/10.1006/jtbi.2001.2277
http://dx.doi.org/10.1006/jtbi.2000.2238
http://dx.doi.org/10.1126/science.276.5309.122
http://dx.doi.org/10.1126/science.276.5309.122
http://dx.doi.org/10.1016/j.ins.2007.06.005
http://dx.doi.org/10.1137/S0097539793256685
http://dx.doi.org/10.1137/S0097539793256685

	Travel in city road networks follows similar transport trade-off principles to neural and plant arbors
	Introduction
	Related work
	Analysing road structures as graphs
	Models of traffic flow and routing
	Relationship to biological network design and routing
	Additional work in Pareto optimality of complex networks

	Results
	A framework for quantifying user-network trade-offs in road structures
	Comparison to baseline networks
	Quantifying optimality, i.e. the distance to the Pareto front
	Using Google Maps to infer travel paths in a city
	Other objectives of interest
	Are travel paths in city road networks close to being Pareto optimal&quest;
	Where near the Pareto front do cities tend to lie&quest;
	Do other city features correlate with Pareto optimality&quest;
	A higher-order Pareto front to further bound travel path complexity

	Discussion
	Methods
	Travel path data
	Greedy algorithm to generate a near-optimal Pareto front
	Archetype analysis and traffic data
	Data accessibility
	Author contributions
	Competing interests
	Funding

	References


