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Abstract Consider networks in harsh environments, where nodes may be lost due
to failure, attack, or infection—how is the topology affected by such events? Can
we mimic and measure the effect? We propose a new generative model of network
evolution in dynamic and harsh environments. Our model can reproduce the range of
topologies observed across known robust and fragile biological networks, as well as
several additional transport, communication, and social networks. We also develop a
new optimization measure to evaluate robustness based on preserving high connectiv-
ity following random or adversarial bursty node loss. Using this measure, we evaluate
the robustness of several real-world networks and propose a new distributed algorithm
to construct secure networks operating within malicious environments.
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1 Introduction

Some networks operate under harsh environments, with rampant node loss (e.g. a com-
munication network in a battlefield or a sensor network monitoring an active volcano);
while other networks operate under milder environments (e.g. a phone network with
customers being occasionally lured away by competitors). If we are shown a static
snapshot of a network, can we predict the harshness of the environment to understand
how node growth and node loss processes together shaped topology? Can we model
and extrapolate these processes to design robust networks?

Prior work has largely studied network robustness assuming single node loss—that
is, a node is chosen randomly or adversarially, and it is removed, along with all its
edges (Albert et al. 2000). We propose to use bursty node loss: not only is the original
node removed, but several of its neighboring nodes, and so on recursively, the extent
of which is governed by a single parameter, β. The value of β measures the harshness
of the environment by indicating how likely a node will be lost in this environment
and how contagious this loss will be to neighboring nodes. We show that β correlates
well with the harshness of the environment of biological protein interaction networks,
and we further develop theMassExodus graph generation model, which can closely
mimic the topology of additional real-world graphs.

Most generative models of network evolution assume monotonic growth of nodes
over time (Barabasi andAlbert 1999; Broder et al. 2000; Fabrikant et al. 2003;Vazquez
et al. 2003; Leskovec et al. 2005a, b; Siganos et al. 2006; Leskovec et al. 2008; Akoglu
and Faloutsos 2009; Chakrabarti and Faloutsos 2012); however, there are several cases
where nodes are lost and in a bursty fashion: For example, infected machines on the
Internet can spread viruses or malware to neighboring machines, potentially affect-
ing hundreds of thousands of machines and costing billions to fix (Moore et al. 2002,
2003). On the power grid, nodes can fail when demand exceeds individual node capac-
ity; such failures forces redistribution of load to neighboring nodes, potentially trig-
gering widespread blackouts that affect millions of customers (Albert et al. 2004; Sole
et al. 2008). In mobile or sensor networks, devices can collectively malfunction due to
battery issues (Carle and Simplot-Ryl 2004), lack of solar power (Alippi and Galperti
2008), or other harsh environmental conditions. Even in social networks, a user may
leave the network to join a rival and in doing so may influence some of his friends to
leave, as well (Wu et al. 2013; Cho 2013). These instances suggest that bursty failures,
coinciding with regular growth, constitute a closer model of reality.

Biological networks present an interesting case to study how evolution has rewired
topology to optimize function in the face of bursty node failures, mutations, and
noise. In molecular interaction networks, protein failures (Gidalevitz et al. 2011),
gene mutations (Gu et al. 2003; Kitano 2004), and propagating environmental and
signaling noise (Newman et al. 2006) all affect how collections of molecules or cells
process information and coordinate responses. In these networks, gene loss events can
be correlated [i.e. two genes are either always present together in the genome, or both
absent (Valencia and Pazos 2003)], which also suggests that node loss effects can prop-
agate through the network in evolutionary time. Prior work suggests that the topology
of these networks has adapted to minimize the impact of propagating environmental
noise on function (Navlakha et al. 2014), yet environmental harshness is typically
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not considered within evolutionary models. Thus, the wide spectrum of topologies
observed within real biological networks (from highly connected and redundant to
sparsely connected and distributed) cannot easily be explained by current generative
models for biological networks (Vazquez et al. 2003; Middendorf et al. 2005).

In addition to modeling the harshness of network environments, there is also a
need to build networks that are optimal for different environments. What is a good
measure of “optimality”? While building cliques may not be practical due to limited
resources or budget, high connectivity was previously suggested to lead to higher fault
tolerance (Albert et al. 2000; Schneider et al. 2011; De Domenico et al. 2014; Chan et
al. 2014). However, evidence from real-world networks suggests that such high con-
nectivity is not necessarily more robust. For example, analyses of ecosystems have
concluded that population stability sharply transitions from overall stability to instabil-
ity as the number and strength of interactions amongst species increases (Haldane and
May2011), and similar observations hold for dependencieswithinfinancial transaction
networks (Acemoglu et al. 2013). Terrorist contact networks are also markedly sparse,
which may be a deliberate strategy to localize the loss of sensitive information upon
capture of an individual (Krebs 2002). Recent work has also considered how depen-
dencies amongst multiple interdependent networks impacts robustness (Buldyrev et
al. 2010; Helbing 2013). For example, energy stations on the power grid depend on
communication nodes on the Internet for their control, and likewise, communication
nodes depend on power stations for their electrical supply. Strong coupling between
the two can trigger large failure cascades across both networks. When failures burst,
high initial connectivity, while initially efficient, promotes the rapid loss of nodes.

The other extreme (highly economic topologies, such as stars and chains) are also
rarely observed by themselves in real-world networks. These topologies yield much
smaller failure bursts but also very low efficiency. The spectrum between these two
ends canbeparameterizedbyβ,whichmeasures the severity of catastrophic, correlated
events of node loss (e.g. the black plague) that can occur during the evolution of a
network. In other words, β measures how likely a node becomes targeted, attacked,
or infected in the environment (resulting in its loss), and how quickly its neighboring
nodes are also lost due to cascading effects. Ideally, topologies should adjust according
to β; when β = 0, cliques are optimal. However, it is not clear what topologies are
best for larger values of β, nor how to generate them algorithmically.

In short, we study the tension between node growth and node loss processes as
applied to a wide variety of networks. We focus on two research problems here:

Problem 1 Given: a snapshot G of a time-evolving network, which operates in an
environment with harshness β, Find: the value of β used to generate G.

In otherwords, we assumeG evolved in a harsh environmentwith parameterβ, and our
goal is to reverse engineer this value of β using graph-theoretic measures (Sect. 3.1).
As mentioned above, if the given network is clique-like, the ideal algorithm should
guess that β is 0 or close to 0. To validate our algorithm, we correlate our predictions
of β with true biological network robustness, which is measured experimentally and
reflects the harshness of the environment (i.e. the probability that the cell will die
following the loss of a node (gene) and downstream effects from this loss.)
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Problem 2 Given: N , the number of nodes, and β, the environmental harshness,
Design: a robust network G with N nodes.

Specifically, wewant to design a graphG so that after bursty node loss with probability
β, the residual graph (i.e. the graph after removing all lost nodes) is as highly connected
as possible. To measure connectivity, we compare λ1(G) with λ1(Gresidual)—i.e. the
largest eigenvalue of the adjacency matrix of the original graph with the eigenvalue
of the graph after removing all lost nodes (Sect. 4).

Overall, the contributions are the following:

– A novel model, MassExodus: it is parsimonious, requiring only one parameter
(β); it is realistic, capturing the behavior of biological networks; and it is useful,
capable of forecasting the robustness of a network (i.e. the harshness of its envi-
ronment in which bursty node loss follows from an initially targeted, attacked, or
infected node).

– A novel optimization problem (namely, maximize the largest eigenvalue of the
adjacency matrix following bursty node loss) with theoretical analysis for several
classes of graphs.

– An empirical evaluation of the robustness of several real-world networks using
this criteria.

– A distributed, model-based algorithm that is efficient and can be used to design
robust networks according to the harshness of the environment.

2 Related work

The related work forms four sub-areas: (a) generative models for social networks; (b)
generative models for biological networks; (c) studies of network robustness; and (d)
epidemiological infection models. We are not aware of prior work that fully address
our two research problems (how to predict the harshness of a network environment,
and how to generate real networks under harsh environments).

Social network models. Most generative models of network formation assume
unabated growth of nodes over time (Barabasi and Albert 1999; Broder et al. 2000;
Fabrikant et al. 2003; Vazquez et al. 2003; Leskovec et al. 2005b, a; Siganos et al.
2006; Leskovec et al. 2008; Akoglu and Faloutsos 2009; Chakrabarti and Faloutsos
2012) or assume a constant number of nodes (Jin et al. 2001), again without node
loss. One exception is the copying model of Kleinberg et al. (1999), which randomly
removes individual nodes (webpages) based on their expected lifetime, though this
model does not handle bursty node loss occurring alongside growth. Recently, Wu et
al. (2013) studied node arrival and departure dynamics in social and collaboration net-
works and found that the likelihood of a user departing the network is closely related
to the activity level of his neighbors (i.e. how often his friends send or receive con-
tent, or update their status). In contrast, our model considers departure more generally
as being triggered independently by an external environment, as is the case in many
scenarios discussed in the Introduction.

Biological network models. Biological network evolution is largely based on copy-
ing or duplication models, which have been shown to best reproduce topologies of
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global protein interaction networks (Vazquez et al. 2003; Middendorf et al. 2005;
Navlakha and Kingsford 2011). In the Vazquez et al. (2003) model, an existing ambas-
sador node v spawns a topological duplicate u. Node u connects to node v with prob-
ability qcon. Then, for each common neighbor x of u and v, with probability qsteal,
either the edge (u, x) or (v, x) is removed (chosen randomly), and with probability
1 − qsteal both edges to x are retained. Unlike previous copying models (Kleinberg
et al. 1999), here the ambassador may also lose edges after duplication. This model
is inspired by the general duplication principle in evolution (Vazquez et al. 2003), in
which a duplicate gene is initially functionally redundant, but over time, the two genes
diverge and specialize into sub-functions. The parameter qsteal directly controls how
many shared neighbors of u and v are retained (i.e. whether it is full or partial duplica-
tion). Prior work has proposed parameters for this model that best mimic the topology
of global protein interaction networks (qsteal = 0.4 and qcon = 0.7; (Navlakha and
Kingsford 2011)). However, this model with fixed parameters cannot reproduce the
range of topologies observed across robust to fragile biological subnetworks, as has
been previously noted (Navlakha et al. 2014). Further, this model by itself ignores the
effects of harsh environments (gene loss (Kitano 2004), environmental noise (Newman
et al. 2006), or other such perturbations that can alter topology).

Network robustness. Most prior work on measuring network robustness have
focused on optimization functions related to node or edge connectivity (Albert et al.
2000), natural connectivity (Chan et al. 2014), among others (Schneider et al. 2011;
De Domenico et al. 2014), yet these measures can all be optimized using cliques,
which, as argued in the Introduction, are not realistic nor robust when node loss is
bursty.

Infection models. Many epidemiological models have been proposed to model cas-
cading processes on graphs (Chakrabarti and Faloutsos 2012). Typically, in these
models, all nodes are initially susceptible (S). Then, an initial node is infected (I) and
this infected state is recursively passed on to susceptible neighbors (following edges
in the graph) with probability β. Infected nodes transition to the recovered (R) state
with probability δ, after which they are not susceptible to becoming infected again. In
this paper, we use the SIR model because it is the most parsimonious model with all
three states (susceptible, infected, and recovered).

2.1 Biology background

One of our main motivations is to model the structure and evolution of robust bio-
logical networks more realistically. Biological networks have evolved to optimize
performance in the face of environment and signaling noise (Newman et al. 2006) and
viral and bacterial attacks (Kitano and Oda 2006). These failures can be bursty and
render some nodes and edges unusable. Similarly, at the evolutionary time-scale, gene
mutation and loss is a common perturbation (Gu et al. 2003; Kitano 2004), the effects
of which can also propagate through the network (Valencia and Pazos 2003; Albert
2007; Guell et al. 2012).

True biological robustness can be measured using genetic knock-out experiments,
where a single gene (node) is experimentally removed from the genome (network). If
this removal results in cell death, the gene is deemed essential or fragile, and otherwise
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it is robust. Most genes [roughly 80% in S. cerevisiae and E. coli (Giaever et al. 2002;
Gerdes et al. 2003)] are robust, meaning the cell can survive the loss of these nodes
(one at a time) and all downstream effects caused by their loss.

Interestingly, fragile genes primarily lie in portions of the network that are least
likely to experience environmental noise, perturbations, and attack (Navlakha et al.
2014). Formally, global protein interaction networks are decomposable into modules
or subnetworks consisting of all proteins (and their induced interactions) involved in a
similar biological process (e.g. transcription, endosomal transport, etc.).Most informa-
tion processing occurs within modules, and these modules lie physically embedded
in various locations in the cell (e.g. transcription occurs internally, in the nucleus;
endosome transport occurs close to the boundary membrane). External, membrane
modules more exposed to harsh external environments are more robust; i.e. they con-
tain few fragile genes. On the other hand, internal modules contain many fragile genes,
however, these modules are also physically more protected from harsh environments.
Thus, biological networks are shaped by their environments, yet to our knowledge,
formal models of this process are lacking.

For both social and biological networks, node loss occurs alongside an underlying
growth process. Next, we present a biologically-inspired model of network evolution
that takes both of these processes into account.

3 Proposed model: MASSEXODUS

We are given n, the number of nodes in the network, and β, the environmental harsh-
ness. For example, in biology, β may be a function of the network’s distance from the
external environment, as discussed above. On the Internet, secure or firewall-protected
intranets will have lower β than public networks exposed to the external world.

We begin with two (active) nodes connected by an edge and with the remaining
n − 2 nodes as isolates. A node is active if it has degree at least 1. In each epoch of
the model, there is a node loss phase and a node growth phase, as described below.

For the loss phase, there are three states for nodes: susceptible, infected, or recov-
ered (Easley andKleinberg 2010). First, we select a random node u in the graph (active
or isolated), and with probability β, infect u (all other nodes at this stage are suscepti-
ble). We then initiate an infection cascade (burst) starting from u. This burst follows a
standard susceptible-infectious-recovered (SIR) epidemiological model with contact
probability also β and recovery probability δ = 1. This means each node has exactly
one chance to pass the infection onto each of its susceptible neighbors in the graph
(each transmission succeeding with probability β) before entering the recovered state.
This process continues until there are no nodes remaining in the infected state. All
nodes that were infected (and their incident edges) are then removed from the graph
and isolated. In subsequent epochs, these nodes may be infected again, as well as
any other non-infected node in the current epoch. This completes the node loss phase
(Fig. 1).

For the growth phase, we select a random node from the isolated set (if there are
any) and add it to the active graph using an existing generative growth model. In this
paper, we focus primarily on the duplicationmodel, in which an isolated node chooses
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Fig. 1 Overview of the MassExodus model. The current network consists of all active nodes with at
least one incident edge and a set of isolated nodes. Step 1: A randomly chosen node is selected and, with
probability β it is infected and triggers an SIR infection cascade (burst). Step 2: All infected nodes are
removed from the network and placed into the isolated set. Step 3: A random node from the isolated set is
added to the active network via the growth model

an active node, connects to it with probability qcon, and copies or steals some of its
edges with probability qsteal (for full description, see Sect. 2). However, any growth
model that proceeds by iteratively adding nodes to an existing graph can be employed
within our framework (Barabasi and Albert 1999; Broder et al. 2000; Fabrikant et al.
2003; Vazquez et al. 2003; Leskovec et al. 2005a, b; Siganos et al. 2006; Leskovec et al.
2008; Akoglu and Faloutsos 2009; Chakrabarti and Faloutsos 2012). This completes
the growth phase and one epoch of themodel (Fig. 1). Both phases repeat for 4n epochs
to provide sufficient time for the network to develop. Algorithm 1 shows pseudocode
for the model.

Even if an active node is initially selected during the loss phase, this node only
becomes infected (triggering an SIR burst) with probability β. Hence, there may be
many growth-only epochs, where nodes are added to the active graph, before any
nodes are removed.

All growth-only models are a special case of our model with β = 0. Our model is
applicable to both undirected and directed networks.

3.1 Classifying network robustness

To address Problem 1, we want to predict the environmental harshness (β) of G under
the MassExodus model. In other words, we want to find:

β∗ = argmax
β

Pr[G|β], (1)

i.e. the value ofβ thatmaximizes the conditional probability thatG evolved in environ-
ment β according to the model. To estimate this probability, we developed a regression
framework to predict the likelihood that G evolved in environment β given just three
topological features of G: the first (largest) eigenvalue of its adjacency matrix, the
number of connected components in G, and the fraction of isolated nodes in G. These
features were selected because they, together, can differentiate between 3 topological
regimes we observed for evolving graphs under MassExodus (before and after two
phase transition values of β; Results, Sect. 5.3). These features were also highly cor-
related with biological fragility (Results, Figure 4A) amongst 10 features individually
tested, and thus they represent a good benchmark for our model.
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Algorithm 1 The MassExodus model. The function compute_SIR_burst(G,u,β) returns the set of all
infected nodes following infection of u using an SIRmodel. The function run_duplication_model(u,v) takes
an isolated node u and connects it to an active node v in G using the duplication model.

Require: n (# of nodes) and β (environmental harshness)
1: #—Start with two nodes connected by an edge and n − 2 isolates—
2: G.add_edge(1,2)
3: Active ← set(1,2)
4:
5: G.add_isolates([3 . . . n])
6: Isolated ← set(3, 4, . . . n)
7:
8: #—Repeat until steady-state reached—
9: for t ∈ [1, . . . , 4n] do
10: #—Select node, spread infection—
11: if random() < β then
12: u ← G.random_node()
13: Infected ← compute_SIR_burst(G,u,β)
14:
15: #—Remove infected nodes—
16: G.isolate_nodes(Infected)
17: Active.remove(Infected)
18: Isolated.add(Infected)
19: end if
20:
21: #—Add node via duplication model—
22: if |Isolated| > 0 then
23: u ← Isolated.random_element()
24: v ← Active.random_element()
25: Isolated.remove(u)
26: Active.add(u)
27: G.run_duplication_model(u,v)
28: end if
29:
30: end for
31: return G

To facilitate fair comparison of feature values for different network sizes, we con-
structed a regression modelRn to classify networks with exactly n nodes. To trainRn ,
we used theMassExodusmodel to construct training networks using values ofβ rang-
ing from 0.00 to 0.27 in step sizes of 0.03. For each β, we simulated theMassExodus
model and, following an initial burn-in period of 2n iterations to allow the network to
develop, we observed (“sampled”) networkswith probability 0.10 in each epoch. Sam-
pling ensures networks represent the range of topologies offered by β, which can oscil-
late since growth and loss probabilistically co-occur. For each sampled network, we
extract a feature vector consisting of the three featuresmentioned above,which are then
associatedwith the corresponding target value ofβ. Once all networks for each value of
β are sampled, we built a nearest-neighbor regressorRn to predict the value of β given
the feature vector for G. The challenge of the regression task is to learn the range of
topologies produced by each value ofβ and to differentiate between similar values ofβ.

Cross-validation was performed by comparing actual and predicted values of β; a
prediction was considered correct only if the predicted value of β exactly matched
the actual value (using a nearest-neighbor classifier; we also tried decision trees and
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a Gaussian Naive Bayes model, but both performed worse than the nearest-neighbor
model.) We used 50 different values of n ranging from 33 to 450. These 50 values cor-
responded to the exact values of n for the 50 real biological subnetworks, as discussed
below.

3.2 Experimental setup and biological data description

We collected a global interaction network for S. cerevisiae (baker’s yeast) by integrat-
ing protein-protein interactions and protein-DNA interactions from prior experimental
studies (Chatr-Aryamontri et al. 2013; MacIsaac et al. 2006). The network consisted
of 5,796 proteins and 79,988 undirected and unweighted interactions.We decomposed
this global network into 50 subnetworks, with each subnetwork corresponding to a bio-
logical process. Annotations associating proteins to biological processes were taken
from the Gene Ontology database (Ashburner et al. 2000). Each subnetwork consisted
of all proteins associatedwith the process and their induced interactions. Because some
biological processes may not be as inherently important for cell survival and growth
as others (thereby affecting robustness requirements), we only selected processes that
represented housekeeping processes without any of which the cell would likely die,
as determined by an expert yeast biologist (Navlakha et al. 2014).

Of the 5,796 proteins, 19.4% (1,122) were determined to be essential in normal
growth conditions by Giaever et al. (2002) (i.e. removal of any of these single nodes
caused the entire network to fail). Each subnetwork was then assigned a fragility score
equal to the percentage of essential genes in the subnetwork. This percentage reflects
the probability that the cell will die following the loss of a node (gene) and downstream
effects from this loss.

4 Proposed robustness measure and analysis

Economy and efficiency are two common factors driving network evolution (Bullmore
and Sporns 2012; Louf et al. 2013), but neither appears sufficient by itself to explain
real-world topology. Economy is related to the amount of resources required to build a
network, which in our case is simply the number of edges. Efficiency is the distance or
number of hops separating two random nodes. For example, if economy were the only
consideration, then most networks would have tree- or star-like topologies; for pure
efficiency, cliques would naturally emerge. While some (latent) combination of these
factors likely drives network evolution, these networks must also be robust to bursty
node loss events potentially triggered by the environment. This leads to the following
question: what topologies are most adequate for variably harsh environments?

To address Problem 2, we propose the following novel optimization problem that
seeks highly efficient networks following bursty node loss. Formally, we seek:

G∗ = argmax
G

λ1(Gresidual). (2)

To overcome a bursty failure, a network should be designed such that the connectivity
of its residual network, Gresidual, is maximized. The residual network corresponds to
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the remaining network after the removal of nodes lost in theSIR infection process.Con-
nectivity is measured via the largest eigenvalue of the adjacency matrix (λ1; Prakash
et al. 2010). Comparing the eigenvalue before (G) and after (Gresidual) node removal
implicitly measures both the impact of the loss and the efficiency of the resulting
topology. Finding G∗ is challenging and depends on the parameter β used in the SIR
process. If β = 0, cliques are optimal, but for higher values of β, cliques also enable
swift spreading of the infection, leading to low residual connectivity.

Below, we analytically compute the expected largest eigenvalue of the adjacency
matrix after bursty node loss for four classes of special graphs. We assume a random
initial node is selected for the SIR process.We also assumeG is connected (undirected)
and n is the number of nodes in G.

Lemma 1 For star graphs, the expected eigenvalue after loss is: E[λ1(Gresidual)] =
( n−1

n )(1 − β)
√
n.

Proof There are two cases corresponding to the two types of nodes that can be initially
infected: the center hub and the satellites.

Center :
{

1
n−1 0 (3)

Satellites :
{

n−1
n (1 − β)

√
n − ε

n−1
n (β) 0

(4)

The center hub is targeted with probability 1/(n−1) and its loss results in the isolation
of every node, leaving a residual graph with eigenvalue 0. A satellite is targeted
with probability (n − 1)/n. If it does not pass the infection to the center hub, the
residual graph has the same eigenvalue as the original (

√
n − 1),minus somenegligible

constant, ε (Chung et al. 2003). If the satellite infects the center hub, the residual graph
has eigenvalue 0. ��
Lemma 2 For line or chain graphs, E[λ1(Gresidual)] = 2.

Proof The expected number of infected nodes along one side of the chain follows a
geometric sum:

∑∞
n=0 βn = 1 + β + β2 + β3 · · · = 1

1−β
< ∞, if β < 1. Similar

analysis follows for the other side of the chain. As n → ∞, the residual graph will
thus also be a chain having eigenvalue approximately 2. ��

For analysis of clique graphs, let the number of recovered nodes following an
SIR process on a clique to be defined as: R∞ = 1 − S(0) exp−R0(R∞−R(0)), where
S(0) = n

n−1 , the proportion of initially susceptible individuals; R(0) = 1/n, the
proportion of initially recovered individuals; and R0 = n × β/δ.

Lemma 3 For cliques, E[λ1(Gresidual)] = n − R∞ − 1.

Proof The residual graph will be a clique on all remaining uninfected nodes (of which
they are n − R∞), thus having eigenvalue n − R∞ − 1. ��
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Finally, to simplify analysis for Erdős–Rényi random graphs, we considered a SI
model with two time ticks; i.e. the initial node is infected at time t = 1, passes the
infection onto each neighbor independently with probability β at time t = 2, and then
the infection propagation stops. This model represents a lower bound on the number
of infected nodes versus using the SIR model. This model can clearly still infect hubs
even if hubs are not directly targeted.

Lemma 4 For an Erdős–Rényi random graph with parameter p, E[λ1(Gresidual)] =
((n − 1 − β(n − 1)p − 1)p + (1 − p)).

Proof The eigenvalue of an Erdős–Rényi random graph with n nodes and connection
probability p is: λ1(Gn,p) = (n−1)p+(1− p) (Fredi andKomls 1981). The expected
number of nodes in the residual graph after infection is n′ = n − 1− β(n − 1)p, and
this residual graph is also approximately an Erdős- -Rényi random graph. Thus, the
expected eigenvalue after infection is λ1(Gn′,p). ��

5 Results

We tackle the following four questions: First, can we predict the robustness of biolog-
ical networks using theMassExodusmodel? Second, does theMassExodusmodel
accurately reproduce the spectrum of topologies observed in non-biological networks
(such as communication or social networks)? Third, does the MassExodus model
exhibit any interesting phase transitions? And fourth, is robustness to bursty node loss
a reasonable latent optimization function driving the evolution of real-world networks,
and how can we design robust networks?

5.1 Predicting robustness of biological networks

Given a network G, can we predict how harsh the environment is in which G evolved?
Or, what value of β was used to generate G using the MassExodus model?

We developed a regression model to predict β given just 3 topological features ofG
(Sect. 3.1). Predictions tested using tenfold cross-validation were highly accurate and
increased with network size (Fig. 2a). For large networks (n > 200), accuracy reached
85–90%, implying that the exact value of β was highly predictable among 10 possible
classes of β values (we observed similar performance for n = 1,000). Performance was
slightly worse for smaller networks (accuracy of 75–80%) due to higher variability in
the occurrence and impact of node loss events. This variability led to less separation
of features in feature space across different values of β (Fig. 3). A baseline classifier
that randomly predicts β would result in 10% accuracy, thus our classifier yields a
7.88-fold improvement in performance, averaged across all n. Overall, β leaves its
stamp on topology, and this stamp can be accurately captured with a simple predictor
using three features.

Next, we show that MassExodus is a reasonable model for biological network
evolution and can distinguish between robust and fragile biological subnetworks. Bio-
logical robustness is measured experimentally and reflects environmental harshness
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Fig. 2 Accurate prediction of network robustness and biological fragility. a Cross-validation accuracy
of predicting β using a nearest neighbor classifier given networks generated using the MassExodus
model. b Correlation between actual biological fragility and predicted value of β (usingMassExodus and
qsteal = 0.4, qcon = 0.7) for each biological network. Highly fragile networks exist in safe environments
(low β), whereas highly robust networks operate in noisy environments (high β). c Heatmap of correla-
tion coefficients between biological fragility and β using different parameters in the duplication model
(qsteal, qcon). Dotted yellow square indicates range of highest correlation, matching literature-proposed
parameters (Color figure online)

Fig. 3 Separability of topological features in feature space increases with network size. Each dot corre-
sponds to a network generated using the MassExodus model. Colors and shape indicate the value of β.
a With small n, variability in the occurrence and impact of node loss events leads to less separability of
features, making prediction of β difficult. b As n increases, networks generated using the same value of
β are much more clustered. The two phase transitions, from black to red/blue to yellow, are also more
apparent (Color figure online)

(Sect. 2.1). Here, we use β to measure environmental harshness and attempt to predict
the value of β for each biological subnetwork. To do this, we considered each bio-
logical subnetwork G and built a regressor Rn with the same number of nodes n as
G (Sect. 3.1). Rn was trained using MassExodus networks and was then applied to
topological features extracted from the real biological subnetwork. We repeated this
for all 50 subnetworks and computed the correlation between the true, known fragility
of the subnetwork and the predicted value of β.

Most fragile biological subnetworks were correctly predicted to have significantly
lower values of β than robust subnetworks (Fig. 2b). This means that our model
correctly inferred that fragile biological networks lie in safe environments, which is
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Fig. 4 TheMassExodusmodel reproduces the range of topologies observed within biological networks.
a Comparison of how three topological features (normalized eigenvalue of the adjacency matrix, number of
connected components, percentage of isolated nodes) vary as a function of 1-fragility for the 50 biological
networks. b Similar comparison versus β for the MassExodus model. Correlation coefficients between
x and y axes are shown in the legend. Red lines depict spline interpolations of the data points, which
show qualitatively similar behavior with the real data. c–e Three example networks generated using the
MassExodus model with n = 1,000 nodes and c β = 0.03, d β = 0.09, and e β = 0.24. Two phase
transitions occur from one giant connected component → several medium-sized components → mostly
isolates (Color figure online)

indicative of their physical (internal) positioning in the cell. On the other hand, robust
networkswere predicted to have evolved in a highly noisy and deleterious environment
(large values of β), as their external positioning also suggests. Interestingly, 5 of the 50
subnetworks we analyzed had β values that did not agree with their biological function
(DNA-dependent transcription elongation, chromatin organization, and transcription
from RNA polymerase II promoter, snoRNA processing and ribosomal subunit export
from nucleus). Some of these may be explained as errors in the initial harshness
annotated to the module (e.g. even though ribosomal export from the nucleus was
labeled as a module existing in a more noisy environment, all activity of proteins in
this module occurs within the cell, and these proteins have little to no contact with
external signals). Further investigation is required to determine if the other modules
represent true biological anomalies or potential errors in the model.
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The high correspondence between β and biological fragility suggests that theMas-
sExodusmodel matches the spectrum of topologies observed across robust and frag-
ile biological networks (Fig. 4a, b). Robust biological subnetworks tended to have
smaller eigenvalues with more connected components and isolated nodes. As men-
tioned above, such sparseness may be a deliberate evolutionary strategy to localize
the spread of noisy environmental signals within harsh environments (high β). On
the other hand, fragile biological networks had higher connectivity, and fewer con-
nected components and isolated nodes, as this enables more efficient signaling in safe
environments (low β). TheMassExodusmodel also yields similar qualitative trends
when comparing topological features with environmental harshness, β (Fig. 4b).

Comparison and advantages over prior work. Prior analyses suggests that frag-
ile biological networks lie in safe environments (low β, where robustness is less
important), and as a result, foster highly connected topologies to enhance effi-
ciency (Navlakha et al. 2014). On the other hand, robust networks lie in harsher
environments (high β) and have sparser topologies to isolate the influence of bursty
perturbations. Thus, the cell has adjusted the topology of networks based on their sus-
ceptibility to spreading perturbations andmutational effects, and our model accurately
captures these differences in an evolutionary growth model.

How dependent is regression accuracy on parameters of the underlying growth
model? The experiments above used fixed values of qsteal = 0.4 and qcon = 0.7,
while varying β. We repeated the experiment using values for qsteal ∈ [0.2 − 0.7]
and qcon ∈ [0.5 − 0.9]. For each parameter pair, we built a regression model and
computed the correlation between biological fragility and predicted value of β for
the 50 subnetworks. Remarkably, the highest correlations observed use parameters
very similar to the optimal parameters proposed in the literature for this model
(qsteal = 0.5 ± 0.1, qcon = 0.8 ± 0.1 here, versus qsteal = 0.4, qcon = 0.7 in the
literature (Navlakha and Kingsford 2011); Fig. 2c). The decay in correlation for very
low or high values of qsteal suggests that too little or too much divergence follow-
ing duplication confers topologies that are not realistic, which also agrees with prior
analysis of interaction conservation between protein homologs using protein structure
and sequence-based analysis (Ispolatov et al. 2005; Pereira-Leal et al. 2007). This
further suggests that the MassExodus model may be capturing actual dynamics of
biological evolution.

Finally, the spectrum of topologies observed in real biological networks may also
be mimicked by employing different growth model parameters for different environ-
ments, without resorting to any node loss events. For example, for fragile (internal)
networks, low values of qsteal could be used to generate denser topologies, whereas for
robust networks, higher values of qsteal can generate sparser networks. To test this, we
built a regression model trained using networks grown with different values of qsteal
and computed the correlation between biological fragility and the predicted value of
qsteal using the same three features as above. The correlations were similar: 0.628
versus 0.609 with MassExodus and qsteal = 0.5, qcon = 0.8. There are, however,
two downsides to the previous approach. First, it does not model node loss caused
by mutation, gene loss, and other such perturbations known to affect network con-
nectivity (Gu et al. 2003; Kitano 2004; Albert 2007; Guell et al. 2012). Second, more
importantly, it requires that the network somehow know a-priori about its environment
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Table 1 Summary statistics of
real-world networks used

All graphs are undirected

Network # nodes # edges

Yeast protein interactions 5,796 79,988

C. elegans brain 279 2,287

Europe road 1,174 1,417

US airports 1,574 17,215

USA Powergrid 13,579 37,448

Gnutella-0808 6,301 20,777

Gnutella-0825 22,687 54,705

World airports 2,939 30,501

Hamsterer social 2,426 16,631

so growth can be guided by pre-selecting the appropriate value of qsteal. In practice,
such an oracle is not present. For example, in biology, duplication parameters would
need to somehow adjust on-the-fly to environmental harshness, and it is not clear what
the molecular mechanism of this could be. Likewise, conditions in monitoring envi-
ronments for sensor networks may change drastically over time and without warning
and thus requires on-the-fly adaptation. For our model, the environment (β) implicitly
drives the network into a robust topology without any knowledge or change in the
underlying growth mechanism.

Analysis of other model variants. We also tested two additional node loss models.
For the first, we fixed the node loss phase to occur every 10 epochs (instead of the
loss phase occurring in every epoch with probability β) starting from a random node
(isolated or active). For the second, we used an SI model (Chakrabarti and Faloutsos
2012), instead of an SIR model, but with limited number of rounds. In each round,
all infected nodes pass the infection to each neighbor with probability β. There is
no recovery, but there are only 5 rounds, after which the infection propagation stops,
and all infected nodes are removed from the graph and isolated. Both of these models
resulted in similar qualitative behavior, and with similar phase transitions (Sect. 5.3).
Results are omitted for brevity.

5.2 Generality of the MassExodus model applied to non-biological networks

Can the MassExodus model reproduce topological features observed in non-
biological networks? To test this, we collected several real-world networks (transport,
communication, and social networks; Table 1) and compared their degree distributions,
distributions of top eigenvalues, and average shortest path lengths versus networks
generated by the MassExodus model.

We observed strong agreement between the real and model-generated topologies
(Fig. 5a). We present these comparisons under a range of β values for different net-
works to explore the impact of different levels of node loss. MassExodus was used
with the duplication model (Vazquez et al. 2003) or the forest fire model (Leskovec et
al. 2005b) during growth, andmodel parameterswere chosen to produce networkswith
exactly the same number of nodes as the real-networks (static snapshots) with roughly
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Fig. 5 Close correspondence between degree and eigenvalue distributions of real-world andMassExodus
networks. aDegree distributions and bDistributions of the top 100 real eigenvalues of the adjacencymatrix.
Parameters used were as follows: USA Powergrid (duplication model with qsteal = 0.7, qcon = 1.0 and
β = 0.09), European road network (duplication model with qsteal = 0.8, qcon = 0.9 and β = 0.05),
Gnutella-0825 P2P network (forest fire model with p = 0.40 and β = 0.025), and US Airport network
(forest fire model with p = 0.50 and β = 0.009)
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the same number of edges (see Fig. 5 legend for parameters used). Interestingly, our
model can produce both power-law (Gnutella peer-to-peer network and USA airport
network) and non-power-law degree distributions (the two geometric networks, USA
Powergrid and European road network). Our model also closely matched the distri-
bution of the top 100 real eigenvalues for all four networks (Fig. 5b). Finally, real
and model-generated networks also had similar average shortest path lengths between
nodes (14.9 vs. 18.4 for the European road network, comparing MassExodus and
real; 3.3 vs. 3.1 for US airports; 17.2 vs. 19.0 for USA Powergrid; and 6.6 vs. 5.5 for
Gnutella-0825 network).

5.3 Phase transitions

Interestingly, as β increased, we observed two phase transitions in network connec-
tivity. The first transition occurred between β = 0.06 and β = 0.09, where a single
giant connected component was split into several medium-sized components (Fig. 4c,
d). The second transition occurred between β = 0.21 and β = 0.24, when the smaller
components were further split into mostly isolated nodes (Fig. 4d, e). While the exact
β values for the phase transitions depend on the parameters of the the underlying
growth model (in our case, qsteal and qcon), the transitions were still observable across
many other parameter settings.

5.4 Observations from evaluating robustness of real-world networks

The close correspondence between three general topologies properties of our model
and real-world networks suggests that robustness to bursty node losses may be an
implicit factor driving network evolution. It also suggests that networks today should
ideally be built to withstand more than just single node loss. For example, road con-
struction can result in the closure of several, nearby roads in an area, as opposed to just
a single road. For air travel, if bad weather halts travel to Chicago, then other nearby
cities will also likely be affected, as well as smaller cities that route through Chicago.
Next we use our new optimization criterion (Sect. 4) to analyze the robustness of
real-world networks to bursty node loss.

We consider two types of node failures (Albert et al. 2000):

1. Random failure: where a single random node is infected and the infection spreads
using an SIR process.

2. Adversarial failure: defined as the worst case connectivity following SIR infec-
tion of the 100 highest degree nodes.

Figure 6 shows λ1 of the original graph G (x-axis) versus λ1 of the residual graph (y-
axis). Robust networks should lie close to the 45◦ line—indicating minimal disruption
following failure—while also maximizing the residual eigenvalue (i.e. the connectiv-
ity following infection). This latter requirement is essential since otherwise, sparse
networks with small original eigenvalues would be optimal.

Observation 1 (Robustness to random, bursty failures) Real-world networks are
robust to random bursty failures (Fig. 6a).

123



1228 Navlakha et al.

Fig. 6 Real-world andMassExodus networks are robust to random and adversarial bursty failure. Eigen-
value of the original network (x-axis) versus eigenvalue of the residual graph after removing nodes lost due
to bursty failure (y-axis)—under a random failure and b adversarial failure. Real-world networks are shown
as circles, and MassExodus networks are shown as ‘+’ and are color-coded to match the real-network
they try to mimic. For each network pair, the same β < 0.05 was used. Inverted triangles show special-case
graphs (chain, star, clique), all with poor performance

Most networks showed less than 1% reduction in residual eigenvalue, with the largest
drop occurring for the Hamsterer social network (4%). This suggests that several
real-world networks have evolved topologies that remain fault tolerant under random
bursty failure.

Observation 2 (Mixed behavior to adversarial failures) Several, but not all, networks
were significantly disrupted following adversarial failure (Fig. 6b).

The Hamsterer social network showed the largest drop in the residual eigenvalue
following adversarial node loss (57.6%), whereas the C. elegans brain network, the
Gnutella peer-to-peer network, and theWorldAirports travel network showed a smaller
drop (25.6, 23.5, and 16.9%, respectively). This difference could be because the latter
three networks implicitly evolved for overcoming faults and perturbations, whereas
Hamsterer likely did not evolve for resilience (the Hamsterer social network no longer
exists today). It also highlights the fact that, although adversarial attacks are rare, they
can potentially lead to catastrophic events. Two of the geometric networks (USA Pow-
ergrid and the European road network) were largely unaffected by even adversarial
failure, likely due to their mesh-like, non-power-law topology, which isolates fail-
ures to mostly local regions. These networks, however, also had the smallest original
eigenvalue of all real-world networks.

Next, we use the MassExodus model to design robust networks.

Observation 3 (ComparingMassExodus and real-world topologies) TheMassEx-
odus networks closely mimic the behavior of the real-world networks under both
random and adversarial attack.

In Fig. 6, real-world networks are shown as circles, and MassExodus networks are
shown as ‘+’ and are color-coded to match the real-network with the same number
of nodes and roughly the same number of edges. The close correspondence in the
original eigenvalue and the residual eigenvalue following bursty node loss of both
MassExodus and real-world networks suggests: (a) that our robustness measure may
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also be a realistic (latent) optimization criteria driving network evolution; and (b) that
our distributed algorithm (based onMassExodus) can be used to construct networks
tailored to operate within harsh environments; e.g. for distributed sensor or wireless
networks in hazardous conditions.

Observation 4 (Unrealistic behavior of textbook graphs) The three special graphs
(lines, stars, and cliques) exhibited very different behavior.

Lines were robust to both random and adversarial failure but had a very small residual
eigenvalue (2). Stars were robust to random failure—when satellites were targeted and
did not propagate the infection to the center node—but were completely disconnected
following adversarial attack of the center node. Cliqueswere not robust to either attack,
but had a very large original eigenvalue.

Observation 5 (Comparison to prior robustness measures)

Our robustness measure is in stark contrast to prior measures of robustness (Related
Work), for which cliques are optimal for both types of attacks. This suggests that either
real-world networks are very far from optimal, or that these measures, alone, are not
realistic optimization functions driving network evolution. In contrast, our measure
leads to more realistic graphs and combines both robustness and efficiency, which are
two common criteria used to evaluate networks.

6 Conclusions

Westudied the dynamics of nodegrowth andnode loss processes on evolvingnetworks.
In particular, we contributed the following:

– A novel model, MassExodus, the first that handles bursty node loss, while also
generalizing other growth-only models.MassExodus can guess the environmen-
tal harshness (biological fragility), and it can mimic the spectrum of topologies
observed in many real-world networks.

– A novel optimization problem (namely, maximize the largest eigenvalue of the
adjacencymatrix following bursty loss) and evidence that this latent function drives
network evolution.

– An empirical evaluation of how several real-world networks fare to this new
robustness criteria, and a new distributed algorithm to design networks in harsh
and adversarial environments.

Questions for future work include: First, we empirically observed a double phase
transition in connectivity as β increased; closer analytics of these transitions and their
potential relation to connectivity in random graphs would be interesting to pursue.
Second, we measured robustness of the residual graph using λ1, but recent work has
proposednatural connectivity (Chan et al. 2014) as an alternativemeasure of robustness
that characterizes alternative paths and the topology of all connected components. It
would be interesting to see if natural connectivity is also relevant to biological networks
and how to optimize it within our model. Third, we assumed a synchronous order of
events but did not consider cases where multiple nodes join and leave the network at
the same time, or cases where nodes have non-uniform loss probabilities.
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7 Reproducibility

An implementation of our model is available at: www.snl.salk.edu/~navlakha/mass_
exodus/.
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