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Habituation is a form of simple memory that suppresses neural
activity in response to repeated, neutral stimuli. This process is crit-
ical in helping organisms guide attention toward the most salient
and novel features in the environment. Here, we follow known
circuit mechanisms in the fruit fly olfactory system to derive a
simple algorithm for habituation. We show, both empirically and
analytically, that this algorithm is able to filter out redundant infor-
mation, enhance discrimination between odors that share a similar
background, and improve detection of novel components in odor
mixtures. Overall, we propose an algorithmic perspective on the
biological mechanism of habituation and use this perspective to
understand how sensory physiology can affect odor perception.
Our framework may also help toward understanding the effects of
habituation in other more sophisticated neural systems.

habituation | odor discrimination | background subtraction | systems
neuroscience | unsupervised algorithm

Habituation is a type of nonassociative plasticity in which
neural responses to repeated, neutral stimuli are suppressed

over time (1). This computation enables organisms to focus their
attention on the most salient signals in the environment, even if
these signals are embedded within high background noise. For
example, if a dog sitting in a garden habituates to the smell of
the flowers, then any change to the environment—for example, a
coyote appearing in the distance—would more likely be detected
by the dog, despite the fact that the coyote’s smell represents
only a small component of the raw odor entering the dog’s nose
(Fig. 1A). Habituation is a ubiquitous aspect of sensory process-
ing in many neural systems, and its impairment has been linked
to various neural diseases, including autism and Parkinson’s
(2, 3).

Habituation has also attracted the attention of computer scien-
tists (4). Computational methods that demonstrate the primary
effects of habituation (i.e., background subtraction) have been
used in robotics applications (5–8) and in deep learning networks
to enhance object recognition (9). These studies have begun
to reveal the benefits of using habituation in machine learning
applications and suggest that models that incorporate additional
features of habituation could lead to even more powerful algo-
rithms. Additional models have used habituation for information
filtering, pattern classification, and novelty detection (10). Some
of these models take inspiration from biology [e.g., habituation
in the toad visual system (11, 12)]; however, most do not model
any specific biological circuit (13, 14). Our goal here is not to
benchmark our approach against other background subtraction
algorithms proposed in the literature (biological or otherwise);
rather, our goal is to interpret a specific biological mechanism of
olfactory habituation from an algorithmic perspective to high-
light a connection between sensory physiology and cognition
(15). This perspective helps bridge classical neurophysiology and
systems neuroscience by describing how an active and dynamical
sensory process affects abstract, circuit-level computation.

Specifically, here we focus on short-term habituation in
Drosophila melanogaster (16), which occurs after about 30 min of
exposure to an odor stimulus and lasts for another 30 min after

the extinction of the stimulus. This is in contrast with faster forms
of habituation, such as odorant receptor neuron (ORN) adapta-
tion (17, 18) occurring on the order of hundreds of milliseconds,
and longer forms of habituation, such as long-term habituation
(16), which lasts for days. Different time scales of habituation
have also been described in the vertebrate olfactory system (1).
Short-term habituation is of interest because it requires a rela-
tively fast online mechanism for its initiation and decay, yet it is
also stable enough to have a lasting effect.

Prior work has studied the mechanisms of short-term habitu-
ation in the mouse and honeybee olfactory circuits (19–22), but
less understood is how habituation in early sensory processing
affects odor coding and odor identification that occurs down-
stream. For example, in honeybee models (21), habituation is
achieved through the potentiation of synaptic strength between
local inhibitory neurons (LNs) and projection neurons (PNs), as
in fruit flies. However, this model focuses on odor representa-
tions in the antennae lobe (22) and not in the mushroom body,
where odor learning occurs. Similarly, in mice models, habitua-
tion has been implemented via short-term depression of synaptic
strength between mitral cells in the olfactory bulb (analogous
to PNs in the fly antennae lobe) and principal cells in the cor-
tex (analogous to Kenyon cells [KCs] in the fly mushroom body)
(19). However, experimental evidence suggests that the effects
of habituation are also observed in the olfactory bulb itself (23,
24), and it remains unclear how these two mechanisms work in
tandem to facilitate both habituation and dishabituation across
multiple time scales (25). The olfactory system of D. melanogaster
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Fig. 1. Illustration of the fruit fly olfactory circuit and two habituation-related problems. (A) Cartoon illustration of the effects of short-term habituation.
(B) Overview of the fruit fly olfaction circuit. For each input odor, ORNs each fire at some rate, denoted by gray shade. ORNs send feed-forward excitation
to PNs of the same type. A single lateral inhibitory neuron (LN1) also receives feed-forward inputs from ORNs and then sends inhibition to PNs. The net
firing rate of each PN is the summation of the excitation it received from its ORN minus the inhibition received from the LN1. The locus of habituation lies
at the LN1→ PN synapse, and the weights of these synapses are shown via red line thickness. PNs then project to KCs, and each KC samples sparsely from
a few PNs. KCs that receive a summed input above a threshold will output to a single inhibitory neuron, called APL. APL sends strong feed-back inhibition
to the KCs, which silences about 95% of the lowest-firing KCs; the remaining 5% of highest-firing KCs form a “neural tag” for the odor. (C) Illustration of
fine discrimination. Prior to habituation, three similar odors (sA, sB, and sC ) share overlapping neural tags. After habituation to odor sA, many of the KCs
shared by all three odors stop firing. As a result, the differences between sB and sC are heightened leading to improved discrimination. (D) Illustration of
foreground (mixture) discrimination. Before habituation, the neural tag of the odor mixture with 80% of odor s and 20% of odor s′ is similar to the neural
tag of pure odor s. After habituation to s, the neural tag of the mixture resembles the tag for pure odor s′, since the s component of the mixture has been
subtracted. KCs activated by odor s (blue); KCs activated by odor s’ (green).

is attractive to study because its anatomy and physiology, from
the receptor level to the mushroom body, have been relatively
well mapped (26–34), allowing us to interpret the effects of
habituation on downstream odor coding, learning, and behavior.
Short-term habituation has also been described in other systems,
such as in mice, cats, and worms (35–38), and may follow similar
mechanisms.

Here, we follow experimentally derived mechanisms of short-
term habituation in the fruit fly olfactory circuit to develop an
unsupervised algorithm (39) for enhancing odor discrimination.
Our algorithm is based on the “negative image” model of habit-
uation (16, 40), in which a simple plasticity rule is used to store
an inhibitory image of a background odor signal, which is then
subtracted from future inputs. Our model can replicate three
general features of habituation: stimulus adaptation (reduced
responsiveness to neutral stimuli that do not have a learned or
innate valence associated with them), stimulus specificity (habitu-
ation to one stimulus does not reduce responsiveness to other,
distinct stimuli), and reversibility (dishabituation to the back-
ground in case it becomes relevant). We also demonstrate the
relevance of these features for computational problems, such
as online similarity search (41) and background subtraction (42,
43), using both neural and machine learning datasets.

Methods
Basic Anatomy of the Fruit Fly Olfactory Circuit. Odors in the fruit fly olfactory
circuit are encoded using five main steps (Fig. 1B).

1) In the first step, ORNs are activated when odor molecules bind to specific
receptors. There are approximately 50 types of odorant receptors in the
fruit fly antennae, and a single ORN contains only one type of receptor.
Thus, an odor is initially encoded as a point in Rd

+, where d = 50. The
coding of odors across the ORNs is combinatorial (44–46), such that every

ORN responds to almost every odor with a different activation level, and
only a few ORNs respond highly to a given odor.

2) In the second step, ORNs extend axons into structures called glomeruli in
the antennae lobe, where they synapse onto dendrites of PNs. There are
approximately 50 PN types, and ORNs of the same type send odor infor-
mation to corresponding PNs of the same type. This step normalizes PN
responses such that the mean firing rate of PNs is nearly the same for all
odors (47–50). In addition, PNs receive inhibition from lateral inhibitory
neurons in the antennae lobe, including LN1 interneurons, which are
involved in habituation, as described below.

3) In the third step, the dimensionality of the representation expands: The
50 PNs project to about 2,000 KCs in a structure called the mushroom
body. Each KC receives input from approximately six random PNs (30),
and KCs respond by thresholding the sum of their PN inputs (26, 51, 52).
Thus, KCs have a rectilinear threshold activation function, which helps
suppress PN noise (53, 54).

4) In the fourth step, each KC sends feed-forward excitation to a single
anterior paired lateral inhibitory neuron (APL) (55), which, in turn, sends
inhibitory feedback to each KC. As a result of this feedback loop, only∼5%
of the most highly activated KCs fire for each odor in what is called a “win-
ner take all” computation (28, 29). Thus, an odor is finally encoded as a
sparse point in a 2,000-dimensional space. We refer to the 5% of KCs that
fire for a given odor as the neural “tag” (the term used in neuroscience) or
“hash” (the term used in computer science) for the odor. Because this cir-
cuit generates tags that are similarity preserving (41), tags for similar odors
share more overlapping KCs than tags for different odors.

5) In the fifth step, KCs send feed-forward excitation to mushroom body
output neurons (MBONs) (31) that “decode” the input and drive behav-
ior. For example, there are MBONs involved in learning approach and
avoidance behavior. When an odor is paired with some reward or pun-
ishment, the strength of synapses between KCs activated for the odor
and downstream approach and avoidance MBONs are modified (32).
While there are many complexities in the decoding process still to be
determined, it is generally accepted that it is easier to learn to associate
different behaviors to two different odors when the KCs activated for
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the two odors are nonoverlapping, so that the modified KC → MBON
synapses do not “interfere” with one another (29).

More detailed circuit anatomy and physiology in the fruit fly olfactory
system can be found in previous reviews (56–58).

The “Negative Image” Model of Habituation. We now introduce a circuit
mechanism for habituation (16, 40) in the fruit fly olfactory system, and
how it may be used to enhance discrimination between similar odors.

Expanding on step 2 of the circuit above, the primary locus for habitu-
ation occurs at the synapses between LN1 inhibitory interneurons and PNs
in the antennae lobe (16, 40, 59) (Fig. 1B). ORNs, in addition to project-
ing to PNs, also send feed-forward excitation to LN1 inhibitory neurons,
which, in turn, synapse onto PNs to inhibit their firing. Habituation is driven
by the increased synaptic strength between LN1s and PNs. In our model,
this synapse is subject to activity-dependent Hebbian plasticity, such that
coincident firing of an LN1 and PN increases the weight of the LN1 →
PN inhibitory synapse. If the ORN is persistently active, the corresponding
LN1 → PN synapse weight will increase, causing the firing of the PN to
decrease over time. To achieve odor-specific habituation, it is important
that only the PNs active for an odor be suppressed, and that the amount
of suppression is related to the activity of the PN.

Although, to our knowledge, there’s no direct experimental evidence
of potentiation in synaptic strength between LN1 and PNs, studies have
shown that inhibitory LN1 is required for short-term habituation and that
γ-aminobutyric acid (GABA)ergic transmission from LN1 is necessary and
sufficient for habituation (16). In addition, computational modeling and
experimental work in the honeybee olfactory system have shown that Heb-
bian modification of synapses from inhibitory LNs to PNs, rather than ORN
adaptation, most reliably explains the shift of an odor mixture’s represen-
tation in the antennae lobe due to habituation (22). Finally, in honeybees,
inhibitory synapses between LNs and PNs have been shown to modify the
PN response to an odor mixture after exposure to the pure odor component
in the mixture (21).

Formally, we are given an ORN (si), its corresponding PN (xi) of the same
type, a single LN1 inhibitory neuron (`) that receives input from all ORNs,
and the weight (wi) of the synapse between the LN1 and the PN (Fig. 1B).
We assume each input is normalized such that the total activation of the
LN1 neuron is a constant, and, without loss of generality, we assume the
constant to be 1 (i.e., `= 1). Then the PN activity equals

xi = max(si − `wi , 0)

= max(si −wi , 0). [1]

If si is a consistently similar background odor, then we would like wi to
converge over time to si to form a “negative image” of the input. After
subtracting this negative image from the next input, what remains is the
foreground component of the odor. To achieve this, the weight update rule
for wi at time t is

wt
i = wt−1

i +α`xt−1
i − βwt−1

i

= wt−1
i +αxt−1

i − βwt−1
i . [2]

The second term is the activity-dependent Hebbian update rule where coin-
cident activity of the LN1 and PN increases wi , weighted by the habituation
rate, α∈ [0, 1]. Thus, the magnitude of the increase in synaptic weight
depends on the magnitude of the PN firing rate. Each PN (xi) is associated
with its own weight wi , and thus the amount of habituation can be differ-
ent for each PN. The third term allows for gradual dishabituation, controlled
by a weight recovery rate β ∈ [0, 1]. We initialize w0

i = 0 for all i.
There are two simplifications made in the above circuit. First, anatomy

shows that there is not a single LN1 inhibitory neuron, but rather about 18
to 20 LN1 neurons, per antennae lobe (60, 61). However, each LN1 neuron
innervates nearly every glomerulus (60–63), and thus we simplify the archi-
tecture to contain a single panglomerular LN1 neuron. Second, anatomy
shows that habituation is actually a three-step process, in which ORNs excite
PNs, which excite LN1s, which inhibit PNs. We simplify this to a two-step
procedure, in which ORNs excite both PNs and LN1s, and then LN1s inhibit
PNs. While there may be subtle differences between the two, computational
modeling (59, 64) suggests that, for creating inhibitory images, inhibitory
synapses can be either feed-forward (as in our model) or feed-back, as long
as feed-back inhibition from LN1 to PNs is fast. This would make the time
lag between PNs firing (due to ORN excitation) and PNs being inhibited (via
feedback from LN1) to be small, ensuring that the effects of habituation are
applied before PNs pass information downstream to KCs.

Problem 1: Habituation and Fine Discrimination. The first problem we con-
sider is motivated by observations of fine odor discrimination in humans.
Imagine three odors that are all very similar to each other, such as three
types of rose flowers. An experimental study showed that, after habituat-
ing to one flower’s scent, even untrained noses could discriminate between
the other two flower scents with higher accuracy than a control group that
did not habituate (65). Intuitively, habituation to one odor causes some com-
mon representation shared by all three odors to be subtracted; this expands
the differences between the two remaining odors, making them easier to
discriminate (Fig. 1C).

Formally, as input, we are provided a stream of odors, S = [s(1)
A , s(2)

A , . . . ,
s(k)
A , sB, sC ], where one odor is observed in each time step. Each odor is a

point in Rd
+, where d = 50 corresponds to the 50 ORN firing rates for the

odor. The s(i)
A represent noisy versions of odor sA. In the simplest case, all s(i)

A

are the same odor, that is, s(i)
A = sA for all i∈ [1, k]. After experiencing the

odor k times, two test odors follow. All three odors (sA, sB, sC ) are highly
correlated with each other, and thus, without any habituation, sB and sC

would smell very similar. The goal is to apply habituation to sA to better
discriminate between sB and sC .

What does it mean to “discriminate” between two odors? As described in
the steps above, each odor is assigned a sparse point in a high-dimensional
space, consisting of m = 2,000 KCs, of which only roughly 5% are active. This
transformation can be viewed as a hash function I :Rd

+→K, where K is a
set of KCs that are active for the odor, and |K|= 0.05m. The function I is
locality sensitive (41, 66), meaning that, if two inputs (such as sB and sC ) are
highly correlated, they will share many active KCs. We denote I(sB) to be
the tag assigned to odor sB, and I(sB; sA) to be the tag assigned to sB after
habituation to odor sA .

The ability to discriminate, then, is related to the amount of overlap
between I(sB; sA) and I(sC ; sA), where fewer shared KCs leads to better dis-
crimination (57). Biologically, KCs synapse onto approach and avoidance
circuits, and the relative strengths of these synapses for odor-activated KCs
determine which behavior will be applied when the odor is smelled (31, 32,
67, 68). For the fly to learn to, say, approach sB and avoid sC , it is impor-
tant that synaptic interference between the two odors is low (27); that is,
there are KCs active for sB that are not active for sC , and vice-versa. Thus,
the smaller the overlap between the KCs active for sB and sC (both after
habituation to sA), the easier it is to discriminate them.

Problem 2: Habituation and Foreground Discrimination. The second prob-
lem we consider highlights the role of habituation for detecting novel
components of odor mixtures.

As input, we are given a stream of odors, S = [s(1), s(2), . . . , s(k), s′′]. The
odors s(i) again represent a persistent background odor (e.g., a garden with
flowers). Then, a new odor s′′ is presented (e.g., a coyote appearing in the
garden), which is a mixture of s and a new odor s′ (Fig. 1A). We are par-
ticularly interested in regimes with low foreground to background ratios;
for example, s′′ could be a mixture consisting of 80% background (s) and
20% foreground (s′). The goal is to robustly detect the foreground com-
ponent of the mixture (i.e., the coyote) by eliminating or ignoring the
background (Fig. 1D).

What does it mean to “detect” the foreground? As before, the more
overlap between the KCs responding to the mixture (s′′) and the KCs
responding to pure odor s′, the easier it is to detect the coyote (s′) and
recall the appropriate learned response.

Experimental Dataset and Setup. We tested our habituation algorithm for
these two problems using published experimental recordings in the fruit fly
of d = 24 ORNs responding to 110 odorants (46). We normalized each input
vector such that all values are nonnegative and the mean of the vector is
a constant (set to 10), mimicking divisive normalization that occurs in the
antennae lobe (47).
Applying habituation. Each time an input vector s is presented, we apply
Eq. 1 to compute the activity of each PN, and then we apply Eq. 2 to update
each habituation weight. Each weight wi is initialized to 0. We set α= 0.05
and β= 0.01. The effect of different α, β values on habituation is shown in
SI Appendix, Fig. S1.
Computing the neural tag of an input. Given a PN vector x, the KC responses
y are computed as y = Θx. Here, Θ is a sparse random matrix, containing
m = 1,000 rows and d = 24 columns. This value for m was selected to pre-
serve a dimensionality expansion ratio of about 40 to 50, as in the fly. In
each row, c = 3 random positions are set to 1, and the rest of the positions
in the row are set to 0. This value for c was selected to approximately match
the sampling ratio of each KC (6 glomeruli out of d = 50) (30). After the
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projection step, a rectilinear function is used to filter out noise in the KC
responses. For each 1≤ i≤m, we set

y′i =

{
yi if yi ≥ τo

0 otherwise,
[3]

where τo is a small constant equal to the mean of the input vectors. Finally,
the winner-take-all sparsification step sets the top 5% of the highest firing
KCs to 1, and the remaining KCs are set to 0. This gives us a vector z∈
{0, 1}m, where

zj =

{
1 if y′j ∈ {d0.05me largest nonzero entries of y′}
0 otherwise

. [4]

Why is the first KC thresholding step needed, in addition to the second?
The winner-take-all alone always allows about 5% (0.05m) of KCs to fire,
even if the KCs are firing at very low rates (which, e.g., could occur when an
odor is close to being habituated). In such a case, the activity of these KCs
could drive approach or avoidance behavior, despite mostly encoding noise.
As a result, a minimum threshold (τ0) for firing is required to suppress KC
noise; this is similar to the notion of a “firing threshold” for a neuron or the
“rectilinear threshold” of rectified linear units in artificial neural networks.

Thus, the tag of an input is a binary vector of length m, with up to 0.05m
values as ones, and the rest as zeros. Equivalently, the tag can be repre-
sented as a set of KC indices that are active for the odor: I(x) = {j:zj = 1}.
We do not arbitrarily break ties, and thus, if there are ties in the KC firing
rates, there may be slightly more ones in the vector.
Neural tag similarity. The KC tag I(s) for an odor s is a set of indices (each
between 1 and m), corresponding to the KCs active for odor s. The similarity
between the tags of two odors s and s′ is defined as the Jaccard coefficient
between I(s) and I(s′),

|I(s)∩ I(s′)|
|I(s)∪ I(s′)|

.

The Jaccard coefficient is a widely used measure to gauge the similarity
between two sets. Its value lies between 0 and 1, with 0 meaning that
the two sets have nothing in common, and 1 meaning the two sets have
identical items.
Forming binary odor mixtures. Predicting ORN responses to an odor mix-
ture remains a challenging problem, with evidence that ORNs for mixtures
can respond both linearly (69, 70) and nonlinearly (71–73) with respect to
the mixture’s individual components. We explore two models here to form
mixtures. For the linear model, given two odors s and s′, the binary mixture
is computed simply as s′′ = ξs + (1− ξ)s′, where ξ determines the concentra-
tion of each odor component. For experiments in this paper, we set ξ= 0.8
to explore regimes with a dominant background odor (s) in the mixture, and
a low signal foreground (s′). For the nonlinear model, the binary mixture is
computed as s′′ = sξ + s′(1−ξ). For both models, s′′ is normalized to have the
same average firing rate as the single odors (45).
Nearest neighbors analysis for online similarity search. For each of the 110
odors, we first compute a ground-truth list of the top N nearest neighbors
for the odor. For odor s, this list is computed based on the Jaccard similarity
between I(s) and the tag for each other odor. For a mixture, s′′ = ξs + (1−
ξ)s′, we seek to determine how well the predicted nearest neighbors for s′′

after habituation to s overlap with the ground-truth nearest neighbors of
pure s′.

The overlap between two lists of N nearest neighbors is computed using
the mean average precision (mAP) (74). The mAP measures the similar-
ity between two ranked lists. Common items between the two lists are
weighted by their ranks in the lists. Formally, assume there are Ntot items
(odors), and let l1 and l2 be two ranked lists of N<Ntot of the items. Each list
can contain items not present in the other list. The list l1 is the ground-truth
list, and l2 is the predicted list whose similarity to l1 we wish to compute. Let
l12 be the list of the Nk common items in l1 and l2, in the same order as they
appear in l1. Finally, let r12(i) = the rank in l1 of the ith item in l12. Then,

mAP(l1, l2) = (1/Nk)×
Nk∑
i=1

i/r12(i).

We compute the mAP over three values of N = {10, 20, 30} and report the
average. The mAP ranges from 0 (least similar) to 1 (most similar). We com-
pare the similarity of two lists using the mAP, as opposed to the Jaccard
coefficient, because the former takes the rank of each nearest neighbor
into account, as well.

Results
First, we provide an example of habituation and prove that,
under our model, habituation weights converge to form a “nega-
tive image” of a constant input. Second, we use habituation to
address problem 1 (fine discrimination) and problem 2 (fore-
ground discrimination) both empirically and analytically. Third,
we demonstrate applications of habituation for improving online
similarity search.

An Example of Habituation and Stimulus Specificity. Fig. 2 shows an
example of how PN responses to repeated presentations of the
same odor (odor A: acetic acid) change over time. Initially, PN
firing rates for the odor are not suppressed, and the inhibitory
synaptic weights between the LN1 and PNs are low. With time,
these synaptic weights become stronger at different rates accord-
ing to the firing rate for each PN, and this causes PN firing to
decrease (Fig. 2A).

Habituation is also stimulus specific (Fig. 2B). Before habitu-
ation, about 50 (5% of the 1,000) KCs respond to odor A, but,
after habituation, these KCs are almost entirely silenced. On the
other hand, KCs remain responsive to a different odor (odor
B: ethyl hexanoate) after habituation to odor A (Fig. 2B), sug-
gesting that habituation to one odor does not hamper responses
to different odors. In addition, habituation is reversible, where
the circuit can dishabituate to one odor when it is not
observed, and then habituate to a different odor (SI Appendix,
Fig. S2).

A

B

C

Fig. 2. Changes in circuit activity due to habituation. (A) Over time
(x axis), the synaptic weights between the LN1 and activated PNs increase
(y axis, left), and the corresponding PN firing rates decrease (y axis, right).
The weights between the LN1 and all nonactivated PNs remain unchanged
(green line at y = 0). There are 24 total PNs, and each curve corresponds to
a different PN. (B) Before habituation, about 5% of the 1,000 KCs respond
(vertical bar) to odor A. After habituation to A, only a few KCs respond for
A. However, after habituation to odor A, KCs still respond to a different odor
B, suggesting that habituation is odor specific. (C) Left shows that odor A
and odor B are relatively distinct odors with little overlap in their tags. Right
shows that, after habituation to odor A, a substantial number (44/50 = 88%)
of KCs in original tag of odor B still respond to odor B after habituation to
odor A. Odor A: acetic acid. Odor B: ethyl hexanoate.
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Convergence of the habituation weight vector to form a “nega-
tive image.” Suppose w is initialized to zero and odor s ∈Rd is
repeatedly presented. A quick calculation shows that the limiting
value of w is then

w*=
α

α+β
s,

indicating that w indeed forms a “negative image” of the
input (modulo the dishabituation rate, β). The following lemma
reaffirms this and shows a geometric rate of convergence.

Lemma 1: Suppose the current weight vector is some w �w* ;
that is, w is coordinate-wise less than or equal to w*. Assume 0<
α,β < 1 and α+β < 1. Let w ′ =(1−β)w +α(s −w)+ denote
the updated vector upon presentation of stimulus s . Then w ′�
w* and

w*−w ′ =(1− (α+β))(w*−w).

Proof: Since w �w*� s , we have (s −w)+ = s −w , and thus

w*−w ′ =w*− (1−β)w −α(s −w)

=w*−αs − (1− (α+β))w

=w*− (α+β)w*− (1− (α+β))w

=(1− (α+β))(w*−w). �

Neural Tags Remain Robust after Habituation to Another Odor. For
habituation to be stimulus specific, the KC tag for an odor s ′

should remain relatively unchanged before and after habituation
to a very different odor, s . Indeed, long-term learning would be
difficult if odor tags constantly changed due to habituation.

To test this, we first generated a synthetic dataset of d =50
ORNs responding to 110 odors. Each odor is a list of 50 val-
ues, sampled independently from an exponential distribution
with λ=10. For all odor pairs s and s ′, we calculated the
neural tag similarity between I (s ′) and I (s ′; s)—the tags of
s ′ before and after habituation to s , respectively. We found
that, on average, 67% (median of 68%) of KCs in the orig-
inal tag of odor s ′ remain active in the tag after habitua-
tion. In addition, the less overlap between I (s) and I (s ′),
the more KCs remain unchanged after habituation (correlation
coefficient= − 0.47; SI Appendix, Fig. S3A). As an example, we
show that, after habituation to odor A, the tag of odor B remains
largely unchanged (Fig. 2C).

Second, we repeated this analysis for real odorant data (46),
which also contains 110 odors, but with responses of d =24
ORNs. We observed similar results—mean and median Jac-
card similarity of 61% and 63%, respectively (SI Appendix,
Fig. S3B)—but with larger spread of the data compared to the
synthetic data. The larger spread is likely due to the biased
sampling (24 out of 50 ORNs) and because the real odors are
more correlated with each other, whereas synthetic odors were
sampled independently (SI Appendix, Fig. S3C).

Overall, after habituation to an odor, the tag of another odor
remains relatively stable; the less similar the two odors, the more
stability. These results are also supported by theoretical analysis
of tag robustness due to habituation, described in SI Appendix,
Lemma S2 and Corollary S2.

Exactly how many KCs need to be shared between two odor
tags such that the learned behavior for one odor can be general-
ized to the other odor remains unclear, biologically. However,
large variations are observed experimentally in KC responses
to the same odor across multiple trials, with only about one-
third of KCs responding reliably across trials (75). Thus, the
overlap observed here (∼65%) may be sufficient to recognize
odors after habituation, and hence, learned behaviors for an
odor can still be recalled and correctly applied after habituat-
ing to another odor. Other processes that occur upstream, such
as different LN1–PN architectures, or that may occur down-
stream, such as pattern completion, could further facilitate odor
recognition.

Habituation Enhances the Separation of Similar Odors (Problem 1).
Here, we show that triplets of similar odors can be better
discriminated after habituating to one of the odors.

As an example, we selected three odors (sA: dimethyl sulfide;
sB : acetone; sC : 2-butanone) whose ORN representations are
highly correlated pairwise (Fig. 3A). As a result, the tags I (sB )
and I (sC ) for odors sB and sC are highly overlapping, sharing 38
out of the∼ 50 (5% of 1,000) KCs (Fig. 3 B, Left). We then habit-
uated to odor sA, calculated the tags I (sB ; sA) and I (sC ; sA),
and found that the number of overlapping KCs shared by these
two tags reduced to 25 (Fig. 3 B, Right), making the two odors
easier to distinguish. This reduction is caused by suppression of
PNs responsive to sA (Fig. 3C), which also fire for sB and sC ,
since all three odors are highly correlated. As a result, some KCs
common to all three odors are suppressed, allowing other KCs
previously below the 5% threshold to become activated and part
of the posthabituation tags for odors sB and sC .

To show that this result generalizes, we repeated the analy-
sis above using all 99 odor triplets in the dataset with pairwise
correlation of > 0.80. We computed the tag similarity between
two of the odors before habituation and then after habituation
to the remaining odor. We observed an average reduction in
KC overlap of 26.7± 15.4% (p< 0.001, paired t test) before ver-
sus after habituation (Fig. 3D). Thus, our model demonstrates
how habituation can help better discriminate between similar
odors and how prior experience may shape the perception of
odors (65).

Critically, even though habituation to odor sA changed the
tags of odors sB and sC , on average, about 60% of KCs that
fire for sB remain firing for sB after habituation to sA (simi-
lar statistics for odor sC ). Thus, habituation helps discriminate
two similar odors, while also not hindering the recognition of
these odors.

Habituation Enables Robust Foreground Discrimination in Odor Mix-
tures (Problem 2). Experimental studies in the honeybee anten-
nae lobe show that PN responses to a binary odor mixture
become more similar to one of its components after habituat-
ing to the other component (21, 22). Similar results have been
observed in the locust olfactory system (69), where KCs that
respond to one component also often responded to mixtures
containing that component. Below, we show that our model can
replicate this result and also provide insight into how habituation
in the antennae lobe may affect odor coding downstream in the
mushroom body.

The following exemplifies this idea (Fig. 4A). Computation-
ally, we first calculated the tags of pure odor s (acetic acid), pure
odor s ′ (ethyl hexanoate), and their mixture, s ′′ =0.80s +0.20s ′

prior to any habituation. The three tags are denoted I (s), I (s ′),
and I (s ′′), respectively. Because s ′′ is composed of 80%s and
20%s ′, there are more KCs shared between s ′′ and s (59% Jac-
card similarity between I (s ′′) and I (s)) than s ′′ and s ′ (32%
Jaccard similarity). We then habituated to s and recalculated the
tag of the mixture, I (s ′′; s). After habituation, I (s ′′; s) and I (s ′)
strongly overlap (96% Jaccard similarity). Thus, habituation to
the dominant component of the odor allowed the minor compo-
nent (s ′) to “pop out” above the background, making it easier to
detect.

We expanded this test from one example odor pair to all
∼6,000 pairs of odors and their corresponding mixtures. The sim-
ilarity between the tag of the mixture after habituation and the
tag of odor s ′ (the minor component) is nearly sixfold higher
than their similarity before habituation (Fig. 4B). We repeated
this analysis with a nonlinear model to form mixtures (Methods),
and observed similar trends (SI Appendix, Fig. S4). Finally, we
also used this simple odor habituation algorithm, derived from
biological mechanisms, to perform background subtraction in
streaming imaging data (SI Appendix, Fig. S5).
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A B

C

D

Fig. 3. Habituation and fine discrimination. (A) Odors sA, sB and sC are highly correlated with each other. Shaded circles illustrate ORN firing rates. (B) (Left)
Before habituation to odor sA, the tags for odors sB and sC highly overlap. (Right) After habituation to odor sA, overlap between the tags of odors sB and sC

decreased. Odor sA: dimethyl sulfide. Odor sB: acetone. Odor sC : 2-butanone. (C) Firing rates of PNs for each odor before and after habituation to odor sA.
After habituation, PNs that respond highly to odor sA are mostly silent for all three odors, while some activity of other PNs remains intact for odors sB and
sC . (D) Comparing Jaccard similarity between odors sB and sC before and after habituation to odor sA, for all odor triplets (sA, sB, sC ) with pairwise correlation
r> 0.80. After habituation, the overlap between the tags of odors sB and sC generally decreases, making them easier to discriminate.

Analysis of mixture representations posthabituation. Our empir-
ical results are supported by theoretical results. Recall that the
mixture s ′′ = ξs +(1− ξ)s ′. Detecting the minor component of
a mixture depends on the concentrations of the two components
(determined by ξ) and the values of α (habituation rate) and β
(dishabituation rate). When the concentration of the habituated
odor s within the mixture surpasses a threshold, KC responses to
the mixture are suppressed.

Lemma 2: If ξ≥α/(α+β) and

‖s‖∞, ‖s ′‖∞≤
α+β

cβ
· τo ,

then I (s ′′; s)= ∅, where I (s ′′; s) is the tag associated with s ′′ after
habituation to s .

Proof: See SI Appendix, Lemma S1. �
On the other hand, the tag for the mixture resembles the tag

for the unhabituated component when ξ <α/(α+β), which is
83% for α=0.05, β=0.01. See SI Appendix, Lemma S3.

Application to Online Similarity Search. The two problems above
exemplify why only encoding the change of an input with respect
to data observed in the recent past may better highlight out-
liers or novel components of the input in streaming data. We use
this motivation to present a twist on the classic similarity search
problem (76–81) (SI Appendix).

We calculated the tags I (s) and I (s ′) of two odors, and
the tags of their mixture I (s ′′) and I (s ′′; s) before and after
habituation, respectively. We then calculated the top N nearest
neighbors for each tag (Methods). Before habituation, I (s ′′) and
I (s) share a large portion of nearest neighbors (median mAP =
0.81± 0.08, over all pairs s, s ′), as expected since s ′′ con-

tains 80% of s . However, after habituation, this overlap
decreased (median mAP=0.19± 0.16), and, instead, the mix-
ture shares almost the same nearest neighbors as odor s ′ (median
mAP = 0.84± 0.22; Fig. 4C). These results suggest that, after
habituation, the representation assigned for the mixture allows
the retrieval of nearest neighbors that are relevant to pure odor
s ′, even though s ′ represents only a small component of the
input. In SI Appendix, we discuss additional applications where
online similarity searches may be beneficial.

Discussion
We developed and analyzed an online unsupervised learning
algorithm for short-term odor habituation based on the “neg-
ative image” mechanism in the fruit fly olfactory circuit (16,
40). Our model can replicate three important aspects of habit-
uation: decreased activity to repeated, neutral stimulus; stimu-
lus specificity; and reversibility (dishabituation). The algorithm
demonstrates how habituation can filter out background signals,
making it easier to discriminate between similar odors and detect
novel components in odor mixtures, even if these components
have relatively low concentration. Our results are consistent with
previous experimental studies of habituation and potentially lay
out a framework for understanding the effects of habituation
on downstream sensory coding, behavior, and cognition in other
systems and species (24, 82, 83).

A critical component of the habituation algorithm is the use
of rectilinear thresholding by KCs, which filters noise prior to
the “winner take all” calculation. After habituating to odor A,
there will likely still be small nonzero PN activity in response
to A. Without a rectilinear function, this noise will persist
in the KCs, and may not be eliminated by APL because the
winner-take-all mechanism adapts the amount of feed-back
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A
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Fig. 4. Habituation, foreground discrimination, and improved similarity search. After habituation to the dominant component in a binary mixture, the tag
of the mixture becomes more similar to the minor component. (A) Each odor mixture contains two odors, a dominant odor (ξ= 80%s) and a minor odor
(1− ξ= 20%s′). Before habituation, the KC tag of the mixture has higher overlap with odor s than with odor s′. After habituation, the tag of the mixture
almost completely overlaps with that of odor s′, suggesting that information of odor s has been “subtracted” from the mixture. Odor s: acetic acid. Odor s’:
ethyl hexanoate. Shaded circles illustrate ORN firing rates. (B) Bar plot comparing the similarity of the tags between odor s′ and the mixture s′′, before and
after habituation to s. Approximately 6,000 mixtures are tested. Before habituation, the mixture has low overlap with s′, but, after habituation, the mixture
has high overlap due to the s′ component “popping out” above the background (P value < 0.001, paired t test). (C) Left compares the similarity of nearest
neighbors of odor s with the mixture before and after habituation. Right shows similar results of odor s′ with the mixture. After habituation, the predicted
nearest neighbors of the mixture are more similar to those of odor s′ than those of s. The height of the bars shows the median value, and the error bars
show median absolute deviation (both P values < 0.001, paired t test).

inhibition it provides based on the amount of feed-forward exci-
tation it receives (28). In contrast, a rectilinear KC function
will apply hard thresholding to suppress KC noise prior to the
winner-take-all mechanism and the selection of the tag. This is
important to reduce the chance that noise due to habituation
activates KCs and triggers downstream behavioral responses.

Our analysis raises an interesting circuit design question: Why
not have the locus of habituation be directly at the ORN →
PN synapse, implemented via anti-Hebbian plasticity (84), as
opposed to using an intermediary inhibitory neuron (LN1)? Two
reasons come to mind. First, dishabituation can quickly occur by
inhibiting the LN1, without requiring any change in the LN1→
PN synaptic weight (40). This could be important if, for example,
the background suddenly becomes important and needs to be
attended to. Second, habituation should mostly occur for neutral
stimuli, as opposed to odors with a strong valence (e.g., danger).
Inhibiting LN1 for important odors provides a simple mecha-
nism to avoid undesirable habituation. Indeed, there are several
neuromodulators targeting the antennae lobe (16), and some of
them may serve these functions.

In addition to PN habituation, there are various mechanisms
of ORN adaptation (e.g., the Weber–Fechener law) that help
preserve information about odor timing and odor identity, espe-
cially in turbulent environments (85–88). Experimental results
have shown that 1) ORN responses are reduced after repeated
odor exposure, 2) ORN responses to an odor can change after
prior exposure to other odors, and 3) ORNs use the tim-
ing of firing to encode complex odor environments (89, 90).
ORN adaptation occurs at a much faster time scale (∼100 ms)
than LN1–PN plasticity (∼30 min), which we study here. While
ORN adaptation certainly improves the robustness of odor cod-
ing in noisy environments, it does not fully explain the effects
of short-term habituation, for three reasons. First, Das et al.

(16) showed that GABAergic local interneurons and GABA-A
receptors in PNs are required for short-term habituation (91).
Second, ORN adaptation, which initiates after milliseconds, also
recovers on a much faster time scale than short-term habitua-
tion (92). And third, in a simple computational model, we show
that a basic model of ORN adaptation is not as odor specific
as PN adaptation (SI Appendix, Fig. S6), again making ORN
adaptation unlikely to be the sole mechanism driving short-
term habituation. Nonetheless, combining ORN and PN adap-
tation to form a more comprehensive habituation algorithm is a
natural next step.

The algorithm proposed here can be improved in several
ways, while potentially capturing more biological detail. First,
we assumed a binary KC tag, whereas, in reality, active KCs
fire at varied (albeit similar) rates (47, 66); including firing
rates for KCs in our model may further increase the ability
to discriminate odors. Second, we used a simplified model of
the antennae lobe, without considering, for example, multiple
LN1 neurons, more elaborate LN1–PN interactions, or timing
aspects of LN inhibition (93). Including these complexities, once
mapped anatomically and physiologically, may lead to a bet-
ter understanding of cross-odor habituation. Third, including
mechanisms for both short-term and long-term habituation (25)
may reveal how habituation can operate on multiple time scales
simultaneously. Fourth, the antennae lobe sends signals to the
mushroom body as well as to the lateral horn, a region of the
Drosophila brain believed to be responsible for innate behav-
iors (94). As a result, habituation that originates in the antennal
lobe may affect both learned behavior and innate behavior
in fruit flies.

While not explicitly our goal here, translating principles
of neural computation to improve machine learning is a
long-sought goal at the interface of computer science and
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neuroscience (39, 95–97). Specifically, these insights may be
applicable for deep learning (98) [e.g., to enhance attention-
modulated artificial neural networks (99, 100)], for online sim-
ilarity search problems, and in electronic noses for event-based
smell processing. Moreover, recent theoretical work has argued
that deep neural networks particularly excel in overcoming real-
world “nuisances”, that is, task-irrelevant variation in inputs such
as translations, rotations, and deformations (101, 102). Habitua-
tion may further support this advance by reducing background
nuisances.

Data Availability
Code for the habituation algorithms is available at GitHub, https://
github.com/aspen-shen/Habituation-as-a-neural-algorithm-for-
online-odor-discrimination.
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