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SUMMARY

Transport networks serve critical functions in biolog-
ical and engineered systems, and yet their design
requires trade-offs between competing objectives.
Due to their sessile lifestyle, plants need to optimize
their architecture to efficiently acquire and distribute
resources while also minimizing costs in building
infrastructure. To understand how plants resolve
this design trade-off, we used high-precision three-
dimensional laser scanning to map the architectures
of tomato, tobacco, or sorghum plants grown in
several environmental conditions and through multi-
ple developmental time points, scanning in total 505
architectures from 37 plants. Using a graph-theoretic
algorithm that we developed to evaluate design
strategies, we find that plant architectures lie along
the Pareto front between two simple length-based
objectives—minimizing total branch length and
minimizing nutrient transport distance—thereby
conferring a selective fitness advantage for plant
transport processes. The location along the Pareto
front can distinguish among species and conditions,
suggesting that during evolution, natural selection
may employ common network design principles
despite different optimization trade-offs.

INTRODUCTION

Transport networks, which are ubiquitous in engineering and

biology, perform many essential functions. In engineering, sub-

way systems, roads, and the power grid all serve to collect and

distribute entities (people, cars, energy) from one location to

another (Newman, 2010). In biology, transport networks are

used by ants to organize foraging trails (Cabanes et al., 2014),

by slime molds to discover and exploit food sources (Tero et al.,

2010), andbydendritesandaxons tocollect and transmit informa-

tion within neuronal circuits (Budd et al., 2010; Cuntz et al., 2010).

The design of transport networks faces fundamental trade-

offs that affect their structure and function. For example, building
and maintaining networks can be costly, as measured by the

amount of material or labor required for construction; further,

physically moving entities through a network often requires

limiting resources, such as power or energy. These costs, how-

ever, must be borne in order to design a useful system that pro-

vides efficient transport performance.

Here, we seek to understand whether this tension between

cost and performance helps dictate plant architecture, and if

so, how plants resolve this tension. The architecture of a plant

is used to acquire resources from the environment and to

distribute nutrients among different organs (Rolland et al.,

2002; Peel, 2013). We view the architecture of a plant as a 3D

geometric network. Nodes in this network correspond to the

base of the stem, the leaves, or branch points, each physically

embedded in 3D space. Edges represent conductive elements,

such as the stem, hypocotyl, or petioles, connecting two nodes

(Godin, 2000; Prusinkiewicz and Runions, 2012) (Figure S1A).

The network should contain a path from each leaf to the base

of the stemwhere the root system lies in order to provide efficient

routes for nutrient transport (Roitsch, 1999;Williams et al., 2000).

Prior work has discovered many mathematical principles of

plant structure, including phyllotaxis (Jean, 2009), planar bifurca-

tion patterning (Kim et al., 2012), fractal self-similarity of branch-

ing (West et al., 1999; Godin and Ferraro, 2010; Mandelbrot and

Novak, 2004), and allometries in various plant parts (Niklas,

2004; Price et al., 2009; Price and Weitz, 2012; Smith et al.,

2014). These properties are captured by several models of plant

architectures, including Lindenmayer systems (Prusinkiewicz

and Lindenmayer, 1996; Allen et al., 2005; Ochoa, 1998; Boudon

et al., 2012) and metabolic scaling models (Banavar et al., 2002;

Price et al., 2010; Sperry et al., 2012). Functional-structural

models (Vos et al., 2010; Fourcaud et al., 2008; Guo et al.,

2011; Simini et al., 2010) have also been used to simulate how

different physiological factors, such as organ topology, leaf

geometry, and carbon allocation, influence plant structure and

function. These and other studies (Corson, 2010) provide useful

constraints that model realistic plant shapes. Here, we build

upon these works to analyze network design trade-offs, where

the goal is to create an efficient network that connects a base

point to leaf points in 3D space. We analyze ‘‘skeletonized’’

versions of plant architectures, evaluating them based only on

length measurements to test a network cost-performance

trade-off without requiring a model with many parameters.
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Figure 1. High-Resolution 3D Scanning of Plant Architecture

(A) A 3D laser scanner with rotating arm fixed to an anti-vibration table.

(B) Image of a tomato plant grown in ambient conditions on scanning day 20, with side and top views.

(C) Corresponding 3D scan of the plant with 940,381 cloud points, excluding the soil and pot. The (x, y, z) coordinates of the base and a few sample leaves are

shown. ‘‘Leaf2D’’ corresponds to the fourth leaflet of the second leaf. Related to Figures S1 and S3.
Lengths by themselves do not capture all trade-offs made by

plant architectures (see Discussion); however, they are related

to several known biological factors that affect plant function,

including hydraulic resistance and construction costs.

Overall, we offer the following contributions:

1. Collection of an extensive dataset of 505 above-ground

plant architectures, spanning 3 species, 3–5 develop-

mental conditions for the same species, and 20 develop-

mental time points for the same plant, each captured using

high-resolution 3D laser scanning.

2. Development of a graph-theoretic algorithm to evaluate

network design trade-offs, and analysis showing that

most plant architectures are Pareto optimal in two simple

cost and performance measures.

3. Evidence that the location of a plant on the Pareto front is

indicative of different trade-offs made in different species

or growth conditions.

We conclude by describing how the trade-offs faced by plant

architectures are also faced by other branching structures,

including dendrites, axons, and vasculature, suggesting the

broad importance of these network design principles in biology.
RESULTS

3D Scanning of Plant Architectures
We used 3D scanning technology to generate high-resolution

measurements of plant architectures (Figure 1A). The scanner

is non-contact, allowing for multiple scans of the same plant

over time without perturbing the plant. Overall, we digitized

505 different plant architectures, spanning 3 species (tomato, to-

bacco, sorghum), 3–5 environmental growth conditions (ambient
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light, shade, high heat, high light, drought), and through approx-

imately 20 days of growth (STAR Methods).

From each plant scan, we extracted (x,y,z) points representing

the location of the base and leaves of the plant in 3D space (Fig-

ures 1B and 1C). These points were used as input to the graph-

theoretic analysis described below.

A Graph-Theoretic Framework for Analyzing Plant
Architectures
We developed a framework to quantify the trade-off between

cost and performance of plant architectures using the theory

of Pareto optimality. This theory is often used in economics

and engineering to find satisfiable solutions that best trade

off multiple, competing objectives (Farnsworth and Niklas,

1995; Kennedy, 2010).

As input, we are given a set of points, P = (p0, p1, p2,., pn) in

3D Euclidean space (Figure 2A). The point p0 corresponds to the

base of the plant and the remaining n points correspond to the

locations of the plant’s leaves and leaflets. The goal is to find a

set of undirected edges or branches B such that there exists

exactly one path from p0 to each leaf. Water and nutrients may

flow in either direction—from a leaf or toward a leaf—and thus

we model our edges as undirected. A path is defined as a

sequence of edges, starting from the base node p0, passing

through zero or more branch points, and terminating at a leaf

node. All edges are treated as one-dimensional (length only).

Non-input points, called Steiner nodes, may also be added

to the network as branch points to reduce the length of the con-

necting architecture (Smith, 1992).

Performance and cost are two metrics often used to evaluate

the design of transport networks (Tero et al., 2010; Pestana et al.,

2004). We measure performance, called travel distance, as the

sum of the distances along the branches from the base to
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Figure 2. Graph-Theoretic Framework and Example Architectures

(A) Example input points derived from a 3D scan of a tomato plant on scanning day 20 grown in ambient conditions. The points represent the locations of the base

of the stem (black point) and leaves/leaflets (green points).

(B) The Satellite tree, which optimally minimizes travel distance.

(C) The Steiner tree, which optimally minimizes total branch length.

(D) The actual plant architecture connecting the input points through branch points.

(E–G) Example trees derived using our algorithm for different values of the trade-off parameter, a.

(H) Random spanning trees.

(I) Stable tree.

(J) Example input points and architecture for a tobacco plant.

(K) Example input points and architecture for a sorghum plant.

In each panel, the values of the two objective functions are shown. All analysis is done in 3D, but points here are embedded in 2D for visualization.

Related to Algorithm S1 and Table S2.
each leaf. We measure cost, called total length, as the sum of

all the branch lengths. While general, these objectives can be

cast in terms of known biological currencies. Travel distance is

related to many known performance measures of plant archi-

tectures, including hydraulic resistance and metabolic energy,

which is required to transport sugars, nutrients, and water be-

tween the leaves and the root system (McCulloh et al., 2003;
Price et al., 2007, 2010; Peel, 2013; Shinozaki et al., 1964); travel

distance can also measure time delays in wound signaling

responses, which affect healing rates (Leon et al., 2001). Total

length is a measure of the total investment of resources (carbon,

nutrients) required to build the architecture (Bloom et al., 1985);

minimizing total length can also aid in weight and posture control

(Domec et al., 2008; Savage et al., 2010). Thus, these two
Cell Systems 5, 53–62, July 26, 2017 55



A

B

C

D

E F G

Figure 3. Plant Architectures Are Pareto Optimal

(A) Mock trade-off diagram of the Pareto front between the individual optimals (Steiner and Satellite) of the two objectives. Regions to the left of Steiner on the

x axis and below Satellite on the y axis are by definition infeasible. Evolution and natural selection should push architectures toward the Pareto front.

(B–D) Actual trade-off diagrams for tomato, tobacco, and sorghum plants for each condition on the final scanning day. The red cross in each diagram denotes the

location of the plant. The two black squares denote the Steiner and Satellite optimals. The gray squares correspond to architectures generated by our algorithm

(legend continued on next page)
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measures are relevant to biological cues that affect plant func-

tion and growth, although they by no means capture all possible

trade-offs made.

These two metrics are formally defined below:

TravelðP;BÞ : =
X
i = 1

n

distBðp0;piÞ (Equation 1)

LengthðP;BÞ : =
X
j

��Bj

�� (Equation 2)

The function distB(u,v) computes the graph distance between

points u and v; i.e., the sum of the edge lengths along the path

from u to v. The length
��Bj

�� of edge j equals the Euclidean dis-

tance between the two endpoints of the edge.

What are the two architectures thatminimize each objective (1)

and (2) by itself? The optimal set of branches to minimize travel

distance consists of the base connected directly to each leaf

by a straight line (Figure 2B). We call this the Satellite tree. The

optimal set of branches to minimize total length corresponds

to the Steiner tree (Figure 2C). A Euclidean Steiner tree is a

tree that connects all the input points whose total branch length

is minimal, while allowing the addition of extra points that serve

as branch points. Banavar et al. (2002) study metabolic scaling

in source-directed transport networks and argue that the most

efficient topology is one where the mean distance from the

source (base) to the leaves is as small as possible; i.e., the tree

is Satellite-like, although this solution has high network construc-

tion costs. On the other hand, Steiner-like trees minimize con-

struction costs but are less mechanically stable (Niklas, 1999).

These two solutions serve as anchors of the Pareto front, as

we describe next.

Generating Solutions along the Pareto Front
There is tension between these two objectives: Satellite mini-

mizes travel distance but has a large total length because each

leaf is dedicated its own direct branch from the base. Steiner,

on the other hand, minimizes total length but may have a large

travel distance for some leaves. How well do plant architectures

resolve this tension (Figure 2D)?

We hypothesize that if jointly minimizing total length and travel

distance confers a selective fitness advantage for plant transport

processes, then one might expect evolution to push plant archi-

tectures toward the Pareto front between these two objectives

(Figure 3A) (Shoval et al., 2012). The concept of the Pareto front

is often used to find the best compromise between competing

objectives. In our case, the competing objectives are travel dis-

tance and total length. Consider two architectures, a1 and a2. If

a2 has shorter length and shorter travel distance compared

with a1 (i.e., if a2 ‘‘dominates’’ a1), then natural selection will likely
for a˛[0,1]. Inverted green triangles show a structurally stable architecture. Blue c

missing) crosses imply that these random architectures lay outside the plotting ar

unlikely by chance.

(E–G) In each panel, we show the distances to the Pareto front for the plant archite

(dashed lines). In each panel, the x axis is the day of scanning, and the y axis is the

by the total length of the plant (mm) and are thus expressed as a percentage.

same color (condition) across architectures (plant, stable, random), we observe

architectures. Related to Figure S2 and Table S3.
eliminate a1 from the population. Given sufficient genetic varia-

tion and sufficient evolutionary time, the theory posits that the

only architectures that will remain in the population are those

that lie on the Pareto front, as these architectures cannot be

improved along both objectives at once. The precise location

of an architecture on the front denotes specialization or a

trade-off between the two objectives, which may vary across

conditions and species depending on resource availability, and

whichever confers the greatest fitness advantage in an environ-

ment. Since plants are among the most diverse species known

and have been evolving for hundreds of millions of years (Hed-

ges, 2002; Sussex and Kerk, 2001), it is natural to test this theory

on plant architectures.

To generate solutions along the Pareto front that interpolate be-

tweenSatellite andSteiner,weconsider the simplest possible joint

objective: a linear combination of the two individual objectives:

JointðP;BÞ=min a ðLengthÞ+ ð1� aÞðTravelÞ

=min a

 X
j

��Bj

��!+ ð1� aÞ
 X

i = 1

n

distBðp0;piÞ
!
;

(Equation 3)

where 0% a% 1. If a = 0, the optimal of the joint objective equals

the Satellite. If a = 1, the optimal equals the Steiner tree, and thus

the joint optimization function is NP hard (Garey and Johnson,

1979). For a˛(0,1), a wide variety of architectures can emerge

that straddle the two anchors (Figures 2E–2G).

We developed a plant-inspired greedy algorithm to construct

architectures that near-optimally minimize the joint objective

for any given value of a (Algorithm S1). The algorithm initializes

the network with a stem protruding from the base node and

then iteratively connects leaves to the tree that minimally in-

creases the value of the objective (STAR Methods).
Achieving Pareto Optimal Trade-Offs Guides
Developmental Growth and Evolution
We scanned tomato plants daily over 20 days of development

in ambient conditions (STAR Methods). On the first day of

scanning (D0), there were only three points representing the

base and the two cotyledons (embryonic leaves). By D20, there

were 19 leaves and leaflets (Figure 1C), for which there is an

enormous complexity of possible architectures: specifically,

there are 5.48 3 1021 possible spanning trees on 19 points

(Aigner and Ziegler, 2009), excluding Steiner nodes.

From each plant scan, we selected the 3D (x, y, z) locations

corresponding to the base of the plant (p0) and all the leaves

and leaflets (p1, p2,., pn). Using these points, we calculated

the Steiner optimal for total length, the Satellite optimal for travel

distance, and the Pareto front using our greedy algorithm with
rosses represent 1,000 random architectures; panels with fewer (or altogether

ea, far away from the Pareto front, indicating that achieving Pareto optimality is

ctures (solid lines), stable architectures (dotted lines), and random architectures

log distance to the closest point on the Pareto front. Distances are normalized

Error bars indicate SEM over replicates. Overall, by comparing lines of the

that plant architectures are much closer to the Pareto front than alternative

Cell Systems 5, 53–62, July 26, 2017 57



different values of a˛(0,1). These solutions all produce as output

a tree. To compare these trees with the actual plant architecture

(which is also a tree), we extracted the branch points from the

scan and traced the skeletonized architecture that connected

the base of the plant through the branch points to the leaves.

All four solutions (Steiner, Satellite, the Pareto front, and the

plant) were evaluated according to their travel distance and total

length andwere then plotted together in a trade-off diagram (Fig-

ure 3A). Each diagram in Figures 3B–3D only shows the Pareto

analysis of a single plant scan taken on the final day of scanning;

analysis of the full dataset of all 505 plant scans across species,

conditions, and time points is shown in Figures 3E–3G (summa-

rized in Table S3).

Strikingly, each tomato plant lay almost exactly on the Pareto

front (Figure 3B) and this persisted over the entire 20 develop-

mental days (Figure 3E). Overall, the average distance from the

location of the plant to the Pareto front was only 0.36 mm

(Figure S2A). This distance amounted to just 0.22% of the

plant’s total length (Table S3). This demonstrates that achieving

well-balanced trade-offs may be an important growth strategy

starting from very early in development and persisting through

at least early maturation. It also suggests that the two proposed

objectives capture important selective pressures that help

dictate plant architecture.

Since plant architectures are highly plastic and influenced by

many real-world factors, such as light availability, temperature,

and nutrient status (Reinhardt and Kuhlemeier, 2002), we

repeated the above experiment with tomato plants grown in

four sub-optimal conditions: vegetational shade, high heat,

high light, and drought (STAR Methods). As expected, there

were many architectural changes in these conditions (Fig-

ure S1B). For example, consistent with the shade avoidance

response (Casal, 2012), plant height was highest in shade

(103.76 mm) versus other conditions (35.89 mm in drought,

38.13 mm in high heat, 43.33 mm in high light, and 63.93 mm

in ambient; average D20). There were fewest leaves in high

heat (5.3 ± 0.9) compared with drought (12.7 ± 1.2), shade

(13.3 ± 0.9), ambient light (17.0 ± 0.8), and high light (20.7 ±

1.5). The total plant volume, measured by the convex hull of

the plant’s cloud points, varied across conditions by up to an or-

der of magnitude: 13.78 cm3 in high heat, 135.21 cm3 in drought,

253.42 cm3 in shade, 598.84 cm3 in ambient, and 668.68 cm3 in

high light. Thus, three important architectural features—plant

height, number of leaves, and plant volume—showed significant

plasticity across conditions.

Despite this diversity, plants grown in these four conditions still

lay on or very close to the Pareto front (Figure 3B). Over all five

conditions, the average distance from the plant to the Pareto

front was 0.14% (high heat), 0.17% (shade), 0.22% (ambient),

0.48% (drought), and 3.17% (high light), with relatively little vari-

ation across replicates (Figure 3E and Table S3).

To test the significance of these results, we compared the

actual plant architecture with two alternatives: random spanning

trees and a structurally stable tree (Figures 2H and 2I; STAR

Methods). Actual plant architectures all lay significantly closer

to the Pareto front than these alternatives (Figure 3E and Table

S3). For example, in ambient conditions, tomato plants were

0.22% ± 0.19% from the Pareto front, compared with

34.44% ± 4.59% for structural stability and 173.97% ± 17.81%
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for random architectures (p < 0.01%). This indicates that

designing Pareto optimal architectures is not inevitable and an

unlikely event by chance.

To further test the generality of this principle, we scanned two

additional species (tobacco, which like tomato is a dicot, and

sorghum, a monocot) through 20 days of development and

across 3–4 conditions each (STARMethods).We again observed

a highly diverse range of architectures in these species across

conditions (Figure S1B), but the architectures of both species still

closely obeyed Pareto optimality (Figures 3C and 3D) and lay

significantly closer to the Pareto front compared with the two al-

ternatives (Figures 3F and 3G and Table S3). We also tested the

theory on a wild-type, model plant (Arabidopsis thaliana) grown

in greenhouse conditions and found similar behavior (Figure S3).

Overall, the architectures of 505 plants—scanned across

multiple species (including monocots and dicots), growth condi-

tions, and developmental time points—lay along or very close to

the Pareto front, suggesting the generality of this principle.

Similarities and Differences in Trade-Off Strategies
across Species and Conditions
The cost of building and maintaining infrastructure often influ-

ences the structure of biological networks. We measured cost

as the total length of the plant used to connect the leaves to

the root system.We found that all three plant species used archi-

tectures that achieved a large ‘‘bang for the buck’’: compared

with Satellite, plants reduced their total length by on average

54.6%, while only increasing travel distance by 6.5% (Table 1).

In other words, a modest increase in travel distance provided a

big savings in cost.

The location of the plant along the Pareto front can distinguish

between species and conditions. To identify this location, we

defined the trade-off ratio (STAR Methods) as the ratio of the

excess length of the plant (compared with Steiner) to the excess

travel distance of the plant (compared with Satellite). Larger

trade-off ratios imply more emphasis on minimizing travel

distance, thus being further to the right along the Pareto front

(Figure 3A). Sorghum are grasses that visually have a more

Satellite-like architecture, and indeed, their trade-off ratio was

significantly larger than that of the two dicot species tested

(average trade-off ratio of 1.312 for sorghum versus 1.149 for

tomato and 1.099 for tobacco; p < 0.01 for both two-sample

t tests). We also observed condition-specific differences. For

example, in high heat, all three species produced architectures

with the largest trade-off ratio compared with other conditions

(Table 1), suggesting that high heat may bias plants toward

architectures that make source-sink transport more efficient, at

the expense of excess cost. In high light, the trade-off ratio

was consistently the lowest (Table 1). Thus, the location of the

plant along the Pareto front may represent systematic variation

in growth strategies.

DISCUSSION

In this work, we generated a dataset of 505 above-ground

plant architectures, collected across 3 species, grown in 3–5

environmental conditions for the same species, and through

20 development time points for the same plant. We derived a

graph-theoretic algorithm to evaluate transport network design



Table 1. Variation in Trade-Off Strategies across Species and Conditions

Species Condition Length Reduction (%) Travel Gain (%) Trade-Off Ratio

Tomato ambient 63.14 ± 0.63 6.68 ± 0.34 1.157 ± 0.02

Tomato shade 68.20 ± 2.85 2.77 ± 0.09 1.129 ± 0.01

Tomato high heat 48.47 ± 1.97 1.87 ± 0.19 1.328 ± 0.04

Tomato drought 62.97 ± 1.14 5.43 ± 0.20 1.112 ± 0.01

Tomato high light 61.93 ± 1.11 10.03 ± 0.41 1.020 ± 0.07

Tobacco ambient 43.73 ± 1.03 12.47 ± 1.03 0.969 ± 0.01

Tobacco shade 52.53 ± 0.74 8.07 ± 0.68 1.130 ± 0.04

Tobacco high heat 47.05 ± 3.95 10.15 ± 0.35 1.198 ± 0.00

Sorghum ambient 49.97 ± 0.70 4.67 ± 0.12 1.373 ± 0.04

Sorghum shade 53.70 ± 0.17 4.00 ± 0.36 1.234 ± 0.05

Sorghum high heat 57.20 ± 0.45 4.13 ± 0.12 1.460 ± 0.04

Sorghum high light 46.33 ± 0.35 7.73 ± 0.37 1.181 ± 0.04

Average: 54.60 Average: 6.50

The average (±SE) total length reduction, travel distance gain, and trade-off ratio for each species and condition. See STAR Methods for definitions.

Related to Table S1.
trade-offs, and we showed that plant architectures are Pareto

optimal with respect to a simple performance and cost trade-

off. Prior studies to our knowledge have not studied how well

such trade-offs are resolved when building networks to connect

points in 3D space, where the only assumed input is the loca-

tions of the base and leaves, and the desired output is a network

connecting the points. We also showed species- and condition-

specific differences in where the plants lay on the Pareto front,

suggesting that variants on the same fundamental network

design trade-off may guide plant structure across species and

conditions. Finally, architectures remained near the Pareto

front through 20 days of measurements, suggesting that these

trade-offs influence growth strategies starting from very early

in development.

Although general, the two measures we study (total length

and travel distance) relate to several known biological factors

that affect the performance of plant architectures. By focusing

only on lengths, wemade a clear and testable theoretical predic-

tion (Pareto optimality), without requiring a model with many

parameters. There are, however, numerous other features that

also affect the performance of plant architectures that we did

not consider here. For example, travel distance (related to hy-

draulic resistance) depends on both the lengths and the radii

of branches when considering Poiseuille flow (radius4 versus

1/length); similarly, a more accurate measure of construction

costs (total length) would relate to the surface area as radius2.

The radii of branches are not uniform across the architecture

and can be regulated by condition; for example, for tomato

plants grown in high light, we observed a 61% increase in

stem diameter compared with plants grown in ambient light on

day 20 (4.314 mm versus 2.681 mm). Prior work has derived

some constraints on branch radii, for example, Leonardo’s rule

(Eloy, 2011) as well as other allometries (Bentley et al., 2013).

Beyond radii, there are also other important features to model,

including light interception, mechanical stress, and leaf size (Ni-

klas, 1999; Puijalon et al., 2011). Thus, while lengths are clearly

important, we do not suggest that they alone capture the full

complexity of plant architectures. Further, our graph-theoretic
algorithm is not intended to represent an alternative model of

plant branching, which has been the focus of decades of prior

work (see Introduction); however, our observation of Pareto opti-

mality may provide a new constraint for these models.

Our focus on evaluating architectures according to two gen-

eral network design principles was alsomotivated by their similar

role in optimizing branchingmorphologies in other biological net-

works. For example, in neurons, action potentials produced at

the soma must be transported to post-synaptic neurons via a

branching axonal arbor. Consider the soma of the neuron as

analogous to the base of the plant and the post-synaptic part-

ners as leaves; travel distance, then, is equivalent to Cajal’s

law of conduction delay (Budd et al., 2010), which states that

axonal branching attempts tominimize the time required to prop-

agate an action potential from the soma to its post-synaptic part-

ners (Cuntz et al., 2010). Total length is ameasure of wiring econ-

omy, which states that neurons also try to minimize the total

amount of wire required to make its desired connections. Both

objectives have been shown to constrain circuit wiring in many

brain regions and species (Rivera-Alba et al., 2014). Trade-offs

between these two properties also influence the design of car-

diovascular networks (Tekin et al., 2016; Hunt and Savage,

2016) and leaf venation networks (Ronellenfitsch and Katifori,

2016), where the requirement for robustness has been

shown to produce loops or cycles (Katifori et al., 2010). Thus,

despite the many mechanistic differences across engineered

and biological systems, this suggests that theremay be universal

optimization principles shared by both (Balu�ska et al., 2006; Nav-

lakha and Bar-Joseph, 2011).

The insights derived here may also raise new challenges for

experimental plant biologists. For example, our observation

that plant architectures are Pareto optimal raises immediate

questions about the molecular and cellular mechanisms respon-

sible for implementing this trade-off. Different structural patterns

across conditions for the same species may be generated by up-

or downregulation of a few core genes (Abzhanov et al., 2004;

Abzhanov et al., 2006; Stevens, 2009). The trade-offs quantified

here may also reveal new selection strategies for plant breeding
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that are vital for increasing food supply in a changing climate

and increasing human population; it may also inform network

construction problems in other domains (e.g., electric grids).

Finally, are there exceptions to the network design principles

studied here? While most of the plants fell on or close to the Par-

eto front, we did find some deviation for plants grown in the high-

light condition. Excessive light can be stressful to plants (Barber

and Andersson, 1992); the deviation we observed suggests that

plant architectures in this condition may also optimize other ob-

jectives in addition to travel distance and total length. Recent ad-

vances in Pareto analysis may be useful in this case to infer addi-

tional candidate objectives given architecture traits (Hart et al.,

2015). Further, we studied four plant species across multiple

conditions; these species are not meant to represent the entire

plant kingdom, nor are these conditions representative of every

possible growth climate for plants. As more 3D architectures

are mapped across different environments and longer time-

scales, it would be important to further test the generality of

this trade-off principle.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Plant 3D architecture data plant3d.snl.salk.edu

Plant 3D architecture data http://dx.doi.org/10.17632/9k7zctdyhs.1

Experimental Models: Organisms/Strains

Tomato (Solanum lycopersicum cv m82D) Plant Biology Laboratories, Salk Institute

Tobacco (Nicotiana benthamiana) Plant Biology Laboratories, Salk Institute

Sorghum (Sorghum bicolor, 100m) John Mullet, Texas A&M University

Software and Algorithms

Code to compute Pareto optimality test This paper plant3d.snl.salk.edu

3D scanner (Faro Technologies) http://www.faro.com/products/metrology/

faroarm-measuring-arm/overview

Other

Plant growth chambers Percival Scientific, IA https://www.percival-scientific.com/

Plant growth chambers Conviron model E8 http://www.conviron.com/products/e8-reach-

in-plant-growth-chamber
CONTACT FOR RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Saket Navlakha

(navlakha@salk.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant Growth Experiments
Scanning was performed on three species of plants (Table S1): tomato (Solanum lycopersicum cv m82D), tobacco (Nicotiana

benthamiana), and sorghum (Sorghum bicolor 100m [Murphy et al., 2011]). Plants were grown in a medium comprised of 2x soil

(SunGro Propagation mix, USA) to 1x medium vermiculite (SunGro, USA) and was moistened with water containing 0.12–0.24 oz/

gallon fertilizer (Plantex, Canada). Tomato and tobacco seedlings were planted in 12-celled planting trays and then transferred to

plastic pots. Tomatoes were transferred to 4in. diameter x 3in. tall plastic pots on day 9 after planting, and were first scanned on

day 11 after planting (which we call scanning day 0, or D0). Tobaccos were transferred to 4.5in. diameter x 3.75in. tall plastic pots

on day 9 after planting, and were first scanned on day 17. Sorghum were directly planted in 4in. diameter x 3in. tall plastic pots,

andwere first scanned on day 7. Plantswere provided approximately 50mLofwater per daywhile in the greenhouse; roughly 24 hours

prior to scanning day 0, plants were moved from the greenhouse into their environmental growth condition.

For each species, experiments were performed across 3–5 environmental test conditions in laboratory growth chambers

(Table S1). Plants were grown on a long-day cycle with 8hr dark (1am-9am) and 16hr light (9am-1am). Plants received 50mL of water

every alternate day, with the exception of the drought condition, where no water was provided after scanning day 0. Tomato

experiments were performed in 5 conditions: ambient light (Percival Scientific, IA; 22�C), shade (22�C, R:FR=0.7), high-heat

(35�C), high-light (Conviron model E8; 22�C, PAR=1140 umol�2m�1), and drought (22�C). Tobacco experiments were performed

in 3 conditions: ambient light, shade, and high-heat (32�C). Sorghum experiments were performed in 4 conditions: ambient light,

shade, high-heat (35�C), and high-light.

Each plant was scanned every 1–2 days through roughly 20 days of development (D20–D22). For each species-condition combi-

nation, 2–5 replicates were used. Scans were performed at approximately the same time every scanning day.

The plant species studied were selected because of their broad agricultural importance, and because they represent two well-

known classes of plant architectures (monocots and dicots). The conditions selected represent a broad range of environmental con-

ditions that many plants must prevail through to survive.
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METHOD DETAILS

Plant 3D Scanning
A high-resolution blue-laser scanner (Edge Scan Arm HD, Faro Inc.) was used to generate a 3D point cloud representation of each

scanned plant. Spatial encoders in the arm provide automatic registration in 3D space, avoiding issues in imaging-based approaches

that require additional segmentation and alignment in the analysis [Nguyen et al., 2015, Heckwolf et al., 2015]. Each plant was

scanned from two opposite sides and then automatically aligned. Computation of the distance from the plant architecture to the

Pareto front was on the order of millimeters, whereas the scanner provides micron-level resolution with an error ±25 um; thus, we

do not believe error in scanning precision affect our conclusions. The number of cloud points for younger plants was on the order

of tens of thousands; elder, more mature plants had up to 1 million cloud points. Accompanying software (Polyworks 2016, USA)

was used to generate a triangulation mesh of the point cloud.

Selection of Input Points
Using Polyworks, points were selected corresponding to the base of the stem, all leaves and leaflets, and all branch points on the

hypocotyl, stem, and petioles (used for tracing the skeleton architecture). For tomatoes, leaf points were chosen at the base of

each leaflet. Although tomato plants may have a similar general structure for compound leaves, we treated each leaflet separately

because we found branch angles and petiole lengths to be highly plastic across species, conditions, and time [Chitwood et al., 2012,

Chitwood et al., 2015, 2016]; this also allowed us to test whether tree structures with higher branch orders (composed of several in-

dividual leaf structures) were Pareto optimal. Tobacco leaves have only one leaf per petiole, and hence leaf points were chosen at the

base of each leaf. Sorghum do not have petioles and instead have long grassy leaves; hence leaf points were selected at two loca-

tions per leaf: the highest point of the leaf in the up-down (y) direction, and the half-way point between the base of the leaf (where the

leaf branches from the stalk) and the highest point. For sorghums grown in high light, multiple stalk split from the base of the stem in

later days, and only the middle structure was considered for computational efficiency.

QUANTIFICATION AND STATISTICAL ANALYSIS

The data were quantified using the graph-theoretic features of travel distance and total length. We used n = 505 architectures. To

determine the likelihood that a plant architecture would lie on the Pareto front, we compared the plant’s distance to the Pareto front

versus two baseline architectures: random spanning trees and a structurally stable tree. These and other technical details are

described in Results, Figure Legends, and Methods.

Quantifying Total Length Reduction, Travel Distance Gain, and Trade-off Ratio
The following quantities compare the travel distance and total length of the plant versus the Satellite:

Length Reduction : =

��Lengthplant � Lengthsatellite

��
Lengthsatellite

(Equation 4)
Travel Gain : =
Travelplant � Travelsatellite

Travelsatellite
: (Equation 5)

The formermeasures the difference in total length as a percentage of the Satellite length. Because the plant length is always shorter

than the Satellite length, the absolute value is taken. The latter measures the gain in travel distance as a percentage of the Satellite

travel distance.

The following quantity measures how the plant trades-off total length and travel distance with respect to the corresponding

optimals:

Trade� off Ratio : =
Lengthplant

�
Lengthsteiner

Travelplant
�
Travelsatellite

; (Equation 6)

The numerator measures the fold increase in length used by the plant compared to the Steiner optimal. The denominator measures

the fold increase in travel distance required by the plant compared to the Satellite optimal. A plant with a high trade-off ratio (i.e. large

numerator, small denominator) implies that it emphasizes optimizing travel distance. A plant with a low trade-off value (i.e. small

numerator, large denominator) implies that it emphasizes optimizing total length.

Algorithm to Generate Solutions on the Pareto Front
First, we describe howwe generated the two anchors of the Pareto front. Computing the Satellite optimal is trivial for any given input.

Computing the optimal Steiner tree for a set of points in 3D Euclidean space is a classic NP-hard problem [Garey and Johnson, 1979].
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However, because most of our plants generate <20 leaves during the time-frame we study, we were able to compute the optimal

Steiner tree using exact solvers [Smith, 1992, Fonseca et al., 2014] in a reasonable amount of time (up to 2–3 days for the largest

plants).

To generate architectures that interpolate between these two anchors, we developed a plant-inspired greedy algorithm. The algo-

rithm initializes the tree with the base node p0 and a stem that connects the base to the centroid of the n leaves. Along the stem, we

add evenly spaced Steiner nodes, which are non-input nodes fromwhich future branches can connect. The stem also provides struc-

tural stability to support the plant’s growth. In each step of the algorithm, an edge is added between an unconnected leaf node u and

some existing node v (including Steiner nodes) in the tree.We add the edge to the tree that minimally increases the value of the objec-

tive. Steiner nodes are also included along every edge added. The algorithm terminates when all n leaf nodes have been added to the

tree. Pseudocode for the algorithm is shown in Algorithm S1.

To generate the Pareto front, we varied a˛[0,1] in step sizes of 0.01. As a varies, different architectures emerge (Figures 2E–2G).

Cuntz et al. developed an algorithm to generate spanning trees to connect input points inspired by similar objectives in neural

branching morphologies [Cuntz et al., 2010]. In their work, travel distance corresponds to a path length cost between the cell

body and the neuron’s synaptic contact points; total length corresponds to a wiring cost. There are two differences between our al-

gorithm and Cuntz et al.: First, we initialize our tree with a stem emanating from the base. Second, every edge we add (including the

stem) includes Steiner points that can be used as branch points. Cuntz et al. only produce a spanning tree with no Steiner points: they

initialize their algorithmwith an empty tree with only the base node, and in each step an edge is added—either between the base and

a leaf node or between two leaf nodes — that minimize the objective. The addition of the stem and Steiner nodes in our algorithm

helps reduce the value of the objective for 76% of the plants (Table S2, left). In our work, we did not assume any given assignment

of leaves to hierarchical levels in the tree [Savage et al., 2010], though this is because we only consider lengths; if branch radii infor-

mation were included, some hierarchical labeling may also be needed.

As mentioned above, we were able to compute the optimal Steiner tree using exact solvers with running time on the order of

2–3 days for most of the largest plants. While our joint objective may also be amenable to exact optimization, exact Steiner tree

solvers reduce the search space using assumptions that are highly-tuned to the pure Steiner tree problem, and that we were not

able to modify to account for the joint objective. However, we did compare the quality of the solution generated by our algorithm

for a = 1 to the optimal Steiner tree (Table S2, right). Overall, the value of the joint objective for our algorithm was on average only

5.97% higher than the Steiner tree. As a decreases, this difference decreases since our algorithm converges to the Satellite optimal

for a = 0. Thus, the Pareto front produced by our algorithm is very close to optimal.

Comparison to Structurally Stable Architectures and Random Architectures
We compared the actual plant architectures with two alternative architectures to show that achieving Pareto-optimality is not trivial

nor likely to happen by chance.

The first alternative was random architectures, where points P = (p0, p1,., pn) were connected by a random spanning tree. This

spanning tree was constructed by first popping a random point v0 from P and adding it to the tree. We then popped another random

(unconnected) point from P and connected it to a random point that was already added to the tree. We repeated this process until all

points were added to the tree. This random spanning tree construction process was repeated 1000 times to create 1000 random

spanning trees.

The second alternative was a structurally stable architecture. This was created by forming a vertical stem connecting the base

node to the centroid of the n leaves, and then connecting each leaf to this centroid point via a straight line, which provides evenweight

dispersion.

The Relationship of Pareto Optimality with Other Optimization Approaches
The method of Pareto optimality represents a type of multi-dimension optimization that uses a single parameter (a) to balance the

trade-off between two objectives. Another formulation of our problem might have been to minimize travel distance subject to a

constraint on total length. Then, by introducing a variable (l, commonly called the Lagrangian multiplier), we can move the constraint

into the optimization itself, which gives rise to a Lagrangian function. Our greedy algorithm for generating the Pareto front could then

be similarly used to optimize the Lagrangian function and determine closeness to optimality for the plants. Thus, there is a close

resemblance between the method of Pareto optimality and that of Lagrangian optimization. The Pareto optimality method also gen-

erates a type of 2D fitness landscape, where the global maxima of the landscape corresponds to any location on the Pareto front

where an optimal compromise between the two objectives is achieved; selective pressure is then assumed to push architectures

towards this front. Themethod of Pareto optimality has been used in numerous studies in biology before [Shoval et al., 2012, Szekely

et al., 2015, Tendler et al., 2015], lending precedence to their use here.

DATA AND SOFTWARE AVAILABILITY

Data for the 505 3D plant architectures are available to download at Mendeley Data (http://dx.doi.org/10.17632/9k7zctdyhs.1). Code

for computing the Pareto front analysis, and visualizations of all plant architectures, are available at: http://plant3d.snl.salk.edu.
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