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Trends
Network design, both in the brain and
in engineering, is a fundamental pro-
blem with many shared challenges and
constraints.

Neural circuits in the brain develop via
synaptic pruning; a process by which
connections are overproduced and
then eliminated over time. In contrast,
computer scientists typically design
networks by starting with an initially
sparse topology and gradually adding
connections.

We discuss possible advantages and
disadvantages of these two design
strategies, when different design stra-
tegies may be useful, and how the
study of one can shed light on the
other.

We also discuss optimization princi-
ples shared by neural and engineered
systems more broadly, and we pro-
pose new questions for joint
investigation.

The focus on extracting abstract, algo-
rithmic principles derived from neural
circuits to enhance network design
represents an exciting area of synergy
between neurobiologists and compu-
ter scientists.
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Neural circuits have evolved to accommodate similar information processing
challenges as those faced by engineered systems. Here, we compare neural
versus engineering strategies for constructing networks. During circuit devel-
opment, synapses are overproduced and then pruned back over time, whereas
in engineered networks, connections are initially sparse and are then added
over time. We provide a computational perspective on these two different
approaches, including discussion of how and why they are used, insights that
one can provide the other, and areas for future joint investigation. By thinking
algorithmically about the goals, constraints, and optimization principles used
by neural circuits, we can develop brain-derived strategies for enhancing
network design, while also stimulating experimental hypotheses about circuit
development and function.

Introduction: Synergies between Neurobiology and Computer Science
Rapid technological advances in neuroscience are transforming our understanding of brain
structure and function. For example, breakthroughs in imaging and optics technologies have
enabled the reconstruction of neural circuits, the visualization and tracking of individual
synapses over time, and the ability to control and manipulate neural interactions; advances
in mRNA analysis techniques have revealed transcriptomes unique to a myriad of neuronal cell
types; and improvements in in vitro and in vivo electrophysiological recording techniques have
led to remarkably precise descriptions of neural communication. These advances have also
inspired new hardware architectures in engineering (neuromorphic computing [1–4]) and new
machine learning algorithms in computer science (deep learning [5–7]). It is an exciting time.

Network design (see Glossary), both in the brain and in engineering, is a fundamental problem
with many shared challenges and constraints. The first goal of this perspective is to describe
how biological principles derived from neural circuit development can be generalized to
improve how network architectures are constructed. The latter is often referred to as the
network design problem by computer scientists, where the goal is to build a network, by
defining its nodes and edges, with some optimization criteria in mind, such as maximizing
efficiency while minimizing costs. This is a problem with a long history and with broad
applications, from designing transport networks to wireless networks and computer chips
[8]. These shared challenges and constraints suggest that there may be many principles
studied by neuroscientists that have direct application to network design problems in computer
science.

The second goal of this perspective is to examine how principles for network design used in
computer science may also help neuroscientists understand the function and development of
analogous processes in neural systems. Many frameworks have been developed to quantify
the trade-offs inherent in different network structures and design strategies. The formalized
measurements of costs, benefits, and constraints used to evaluate network function by
engineers could be useful in providing neuroscientists concrete metrics to form and compare
hypotheses about circuit organization.
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Glossary
Computational (deep) neural
networks: method for performing
computational optimization loosely
based on how neurons perform
computation in the brain. These
networks contain several layers
(collection of nodes) that are
connected by edges that encode a
weight. In feed-forward models, the
first layer encodes the input and
each successive layer uses the
values in the previous layer to
perform computations, often based
on the weighted sum of inputs. Deep
neural networks refer to the number
of layers in the network, which can
range from few to hundreds.
Network design: networks consist
of a collection of nodes that are
connected to each other via edges.
They range from fully connected
(every node is connected to every
other node) to spanning trees (see
below). Network design is focused
on determining how many edges to
place and where to place them, such
that some performance metric is
optimized (e.g., minimizing time to
relay messages, minimizing the
number of redundant paths between
nodes, or minimizing costs). Network
design is an important aspect of
many engineered and computational
systems.
Network efficiency and
robustness: common measures
used to evaluate network
performance. Efficiency measures
how quickly a signal traverses from
an input node to an output node
through a path in the network.
Robustness measures how tolerant
signal propagation is to failures along
the path.
We first contrast neural circuit development via synaptic pruning, where connections are
overproduced and then eliminated over time, versus engineered network design, where
connections are usually added over time from an initially sparse topology, since adding
connections that will soon be eliminated is deemed wasteful. We discuss the advantages
and disadvantages of both approaches, when different design strategies may be useful, and
how the study of one can shed light on the other. We then step back and extract from this
pruning example five optimization principles often shared by neural and engineered systems.
We conclude by describing potential avenues of future bidirectional research on network
design using these principles as a guideline.

Synaptic Pruning during Development: A Network Design Perspective
Background
In the early development of neural circuits, nodes and edges (neurons and synapses) proliferate
until roughly age 2 years in humans. Then, development shifts into a largely regressive process,
where the number of nodes remains more or less unchanged, but where a majority (50–60%) of
synapses are pruned by adulthood [9–12]. Although synaptic loss may seem uneconomical
from an engineering point of view, there are two reasons why it may occur in the brain. First, this
procedure reduces the amount of genetic information required to code for the trillions of
connections made in the human brain [13]. Instead of requiring precise instructions to specify
every connection, approximate rules can be applied and then be fine-tuned by experience.
Second, even if some connections are genetically prespecified [14,15], this would not be
desirable for the entire brain because the most appropriate subset of connections also depends
on experience [16,17]. Thus, one challenge of development is to find the most appropriate
subset of connections according to a priori unknown environmental stimuli. The brain finds this
subset by overproducing and then eliminating infrequently used connections based on activity-
dependent feedback [18,19] (Figure 1A).

Computer scientists have long been fascinated by how networks develop and evolve over time,
be it transportation networks such as highways and roads, technological networks such as the
Internet, or molecular networks such as protein interactions in the cell. Numerous models have
been proposed to capture the dynamics of these developmental processes, including how new
nodes are integrated into an existing network, how information propagates through the
network, and how different topological structures, such as communities, form [20–25]. While
some retraction events do occur — a road may close, a gene may be lost — these models treat
these as relatively minor events and largely assume that the number of nodes and edges
increases as the network develops over time. Other models have studied aging of nodes or
Online algorithm: algorithm that
processes inputs in a serial fashion,
one or few at a time. In other words,
the algorithm does not need to wait
for the entire input in order to
generate an initial output.
Randomized algorithm: algorithm
that relies on random decisions as
part of its logic. Randomized
algorithms are effective for breaking
symmetry and for overcoming
adversaries since it is impossible to
anticipate the exact behavior of a
randomized algorithm. There are
several cases in which randomized
algorithms can be used to solve
problems that deterministic

EngineeringBrain(A) (B)

Figure 1. Pruning versus Growth Strategies for Network Design. (A) In the brain, connectivity is dense and then
pruned over time. (B) In engineering, a sparse backbone topology (called a spanning tree) is often built to ensure that a
communication path exists between any two nodes, and then new edges are added over time. Both strategies produce
networks with the same number of nodes and edges at the end, but with different topologies. The thickness of an edge
indicates the usage (strength or weight) of the connection.
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algorithms are not guaranteed to
solve.
Signal interference: anything that
disrupts a signal as it travels along a
channel (edge) between a sender
and a receiver.
Spanning tree: for a connected
graph G, a spanning tree is a
connected subgraph of G containing
all the nodes in G and the minimum
possible number of edges.
Use it or lose it: inspired by
principles of Hebbian learning, an
edge in a network is preferentially
kept if it is frequently used to
transmit information between nodes
in the network; otherwise it is
removed.
Wireless networks: collection of
devices that interact wirelessly.
These networks can be prespecified
(e.g., a soccer robot team) or
created in an ad hoc fashion (all
cellphones within a given radius).
Determining low-cost communication
strategies for these networks is
important for achieving robust and
efficient network performance.
edges in a network [26–30], though the mechanisms driving retraction in these models is not
intended to be neural inspired.

When designing networks, engineers often start by building a bare-bone topology and then
adding connections over time based on need, demand, or budget (Figure 1B). So, why are
neural pruning strategies rarely used in engineered network design? Two reasons come to
mind. First, deliberately adding connections that will soon be removed is considered wasteful,
particularly when the cost of making connections is high (e.g., building roads). Second,
engineered network design is often done in a top-down centralized manner. For example,
global traffic patterns of a city can be collected and analyzed together to determine which new
road to add to best mitigate future congestion. With a central planner, it is easy to compute the
potential value of a road without having to actually construct it. In the brain, building and
maintaining synapses does impose energetic costs [31,32]; however, the brain is a distributed
system, where no central planner observes all the information flowing through the network. In
such a case, a different strategy is needed, one where the value of a connection is determined
by building it and then seeing how frequently it is used.

Using Synaptic Pruning for Network Design
To formalize how pruning strategies may be useful for network design, Navlakha et al. [33]
recently combined theory and experiments to compare pruning- versus growth-based strate-
gies for a distributed network design problem. The main challenge of this problem is that the
most appropriate subset of connections to keep depends on the activity observed in the
network, which is not known in advance. Moreover, activity flows through the network in real
time, and thus cannot be stored and analyzed in bulk.

To find this subset of connections, Navlakha et al. derived a neural algorithm based on hyper-
connectivity followed by pruning using a simple activity-dependent ‘use it or lose it’ rule,
implemented by each synapse independently. In this rule, edges (synapses) that observe heavy
traffic are more likely to be kept than edges that experience less traffic (Figure 2A,B). This strategy
was compared with a growth-based algorithm [34], where a minimal topology, called a spanning
tree, was initially built to guarantee that a communication pathway exists between every pair of
nodes; local edges were then added to shortcut common routes observed in the network activity.
Thegoal is to learn theappropriatestructure or topology of the network that best matches patterns
in the input activity. The final network produced by both of these approaches was evaluated based
on two common graph-theoretic measures: efficiency and robustness.

Simulations of the pruning algorithm raised a new hypothesis about how the overall rate of
synapse elimination during development plays a critical role in optimizing network structure
(Figure 2C). The pruning algorithm observes some activity, prunes some low-use edges,
observes more activity, and prunes more edges. The percentage of edges pruned in each
such interval defines the pruning rate. Even though each pruning rate produces networks with
the same initial and final density (i.e., the same number of nodes and edges at the beginning and
end of the simulation) and each uses the same use-based principle to determine which synapse
to eliminate, different pruning rates have a striking impact on the topology of the final networks
constructed. The only variable changing across pruning rates is the percentage of synapses
that are eliminated in each developmental time point.

Although the molecular and cellular mechanisms driving activity-dependent pruning have been
extensively investigated for decades [17,35,36], this critical rate parameter has previously been
neglected by experimentalists [9,12]. Using an electron microscopy staining technique that
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Figure 2. Synaptic Pruning for Network Design. (A) Prior work has largely focused on understanding the molecular and cellular mechanisms driving synaptic
pruning at an individual synapse. Global aspects of this process, including the rate at which synapses are pruned, the impact of these rates on network topology, and the
contrast of pruning-versus growth-based algorithms commonly used in engineering to construct networks, was not previously studied. (B) A new distributed network
design algorithm based on hyperconnectivity followed by aggressive pruning. The algorithm identifies the least frequently used edges and prunes them over time. (C)
Depiction of how four different pruning rates, which all start and end with the same number of nodes and edges, affect final network topology. In the middle panel, the x
axis denotes time, and the y axis denotes the number of synapses in the network. For the decreasing rate, synapses are aggressively pruned early on, whereas for
increasing rates, pruning is initially conservative. The network topology at the final time point is shown on the right. Differences in network topology affects the efficiency
and robustness of signal propagation through the network.
pronounces electron opacity at synaptic contact zones [37,38], coupled with high-throughput
machine learning analysis [39,40], Navlakha et al. counted >20 000 synapses across 41
animals and 16 time points in the developing mouse somatosensory (barrel) cortex. They
determined that pruning rates decreased over time (i.e., a period of rapid elimination was
followed by long period of slower elimination). They then translated these insights back to the
network design domain and found, both theoretically and via simulation, that decreasing rates
of pruning lead to 20–30% more efficient and robust networks compared to pruning using other
rates, such as constant or increasing rates.

Why did decreasing rates perform better than other pruning rates? Intuitively, when starting
from a random tabula rasa network, there are many connections that will not be important, and
these are relatively easy to identify quickly. For example, when designing an airline network, it
will not take long to learn that Los Angeles to New York City is an important and frequently used
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route, whereas Des Moines to Fort Lauderdale is less common. Decreasing rates thus have two
advantages. First, they remove many of these uncommon connections early and then provide a
longer period of time for the remaining connections and pathways to be fine tuned. Second,
they incur the least energetic cost amongst the pruning strategies, since many synapses are
eliminated early on. Increasing rates have the advantage of being able to observe more data
prior to making elimination decisions; however, such rates drastically alter network topology at
later time-points, which could fragment the network.

Pruning-based algorithms have also been found to markedly improve both efficiency and
robustness compared to growth-based methods for distributed networks. Adding edges to a
sparsely connected network without a centralized controller is limiting because most edges are
local, connecting nodes in the same vicinity. This hampers the ability to discover global
connections that can dramatically improve network efficiency. Further, sparse networks
(spanning trees) have many nodes whose removal can disconnect the network if not further
connected; this reduces robustness. Prior work has shown that in Hopfield networks, pruning
maximized resource utilization for memory storage [16]. Thus, using resources to temporarily
build extra synapses leads to rapid convergence to the most appropriate subset of connections
in the network, offering a new strategy for distributed network design.

Pruning as a Biological Principle For Network Construction
Biologically, learning and novel sensory experience in adulthood also results in the generation of
new spines; a majority of which are selectively eliminated following a decreasing rate of pruning
[41,42]. This suggests that learning-induced spine formation throughout the lifetime of an
organism follows a similar rule of structural plasticity. Competition for inputs can also sculpt
neural circuits, where ‘losing’ (i.e., redundant) inputs are pruned, and ‘winning’ inputs are
strengthened and potentially gain additional synapses. Examples of this include the cerebellum
[43] and neuromuscular junction [36]. Finally, arctic ground squirrels prune synapses during
hibernation; upon arousal, synapses are overproduced and then pruned back to prehibernation
levels after roughly 2 h [44,45]. This may represent a cost-savings mechanism during hiberna-
tion and a means to quickly adapt to a new environment after arousal.

Given the broad importance of adaptively determining appropriate connections in a network, it
is perhaps not surprising that pruning-based strategies are used throughout the animal world.
In the development of vasculature networks in zebrafish, vessel pruning follows a decreasing
rate, where the majority of pruning events occurs shortly after fertilization [46]. Pruning is also
observed in slime mold foraging networks [47], in ant pheromone trail networks, and in plant
root foraging [48]. In all of these cases, pruning implements an explore–exploit strategy, where
generating excess allows for quick discovery of the important. While the pruning mechanisms is
clearly different across these examples, pruning appears to be a widely used principle of
network construction in biology.

Practical Applications and Follow-up Work
Where might this pruning strategy be of practical use in engineering? As mentioned above,
applications that can rely on central planning, such as building road networks, are usually best
optimized in a post hoc manner. However, emerging technologies based on mobile, wireless,
and sensor devices require a distributed optimization of network architectures. These appli-
cations have raised new computational challenges including the need for energy-efficient and
flexible topologies [49,50]. For example, wireless networks that monitor physiological states in
the body [51], that track volcanic activity in a hazardous environment, or that scan for enemy
movement in a battlefield [52] are not easily serviceable and require that communication
68 Trends in Cognitive Sciences, January 2018, Vol. 22, No. 1



pathways between nodes adapt to a priori unknown activity patterns. The main difference in
these applications is that network connectivity can be modulated digitally (wirelessly), as
opposed to by altering physical wiring.

Pruning strategies may also be applicable for designing efficient networks-on-chip circuits [53]
and for training deep machine-learning networks [54,55]. Training a deep network is compu-
tationally and memory intensive, which can preclude their use in applications where such
resources are not available. Standard learning approaches do modify connections weights but
largely assume that architectures are fixed over time (e.g., all-to-all topologies). Pruning low-
weight connections during training in a decreasing rate schedule may enable more effective
network performance by reducing the complexity of a model without sacrificing its accuracy.

The insights derived here have also led to several follow-up studies. For example, while there
are many models that describe how synaptic weights change as a function of activity (e.g.,
spike-timing dependent plasticity), less emphasis has been placed on understanding structural
plasticity, that is, how network topology changes as a function of activity. Recent work has
shown that using pruning strategies in a biological neural network can decrease the time to
learn appropriate weights for inferring input–output mappings [56] and can be more robust in
the presence of noise [57].

These findings also raise questions about whether pruning rates are perturbed in neuro-
developmental disorders, such as Fragile X syndrome (too many synapses) or Rett syndrome
(too few synapses), compared to neurotypical individuals that lie in a well-balanced trade-off in
between. Interestingly, excessive connectivity can lead to signal interference – a major
challenge in wireless networking [58] – where communication pathways meant to be distinct
overlap with each other, reducing the speed and reliability of transmission.

Optimization Principles Shared by Neural and Engineered Networks
The above example highlights how an algorithmic perspective on neural development could
inspire new algorithms for computer scientists and could raise new biological hypotheses about
circuit construction. Next, we take a step back and extract from this example five optimization
principles shared by many neural and engineered systems. These principles have been
explored in other biological systems at the molecular level (e.g., gene regulation and genetic
circuit design [59,60]); at the cellular level, excluding the brain [61]; and at the population level,
such as the collective behavior of organisms [62,63]. However, they are not typically applied by
neuroscientists when appraising network performance. Prior work has pointed out some
additional similarities [50] – including the reliance on network interactions (Figure 3A) and
distributed forms of computing (Figure 3B) – which we build upon here.

Efficiency
Efficiency provides a measure of the time versus resource cost of an action. For example, in
engineered networks, efficiency could measure how long it takes to process an input signal,
transform it, and then trigger an appropriate output response. A variety of network structures
have been proposed to facilitate efficient information transfer (e.g., motifs and hubs), although
some of these structures are more costly to build and maintain than others.

In the pruning example, we measured efficiency in terms of the time to propagate a signal from
an input node to an output node through the network. Extra synapses, though costly to
maintain, were used to quickly converge to optimal routing paths. In the brain more generally,
resources are limited in numerous ways [64]: (i) volume of physical space, which is finite and
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Figure 3. Two Common Features of Neural and Engineered Systems. (A) Networks are a common abstraction for
representing neural communication. Nodes can be defined at multiple levels, including as individual neurons or as a
population of neurons. Edges denote synapses or communication pathways and are often directed and weighted.
Networks are embedded in physical space, which can impose wiring and volume constraints that affect connectivity. (B)
Centralized systems contain a node that can monitor and control the entire network from one location. In distributed
systems, each node has only a limited view of network activity, and coordination must arise emergently from the behavior
of all nodes. In the central nervous system, there is likely a continuum between fully distributed and centralized
architectures. For example, local hubs may collect and coordinate the activity of many small subcircuits. As observed
in the pruning example, solving the same computational problem using a centralized versus a distributed algorithm requires
markedly different strategies.
affects cell packing [65]; (ii) metabolic costs involved in supporting synaptic transmission, which
can affect the number of available synapses [32]; and (iii) energetic costs associated with
generating and propagating action potentials [66]. Two exemplars of neural efficiency that
affect network design are Cajal’s law of conduction delay and the wiring length minimization
principle, which constrain neural arborization in many brain regions and species [67–72]; other
examples include packet switching [73] and short input–output processing paths [74]. Under-
standing how to allocate limited resources to achieve the best performance per unit cost [75] is
an essential component of network design.

Robustness
Robustness measures network resilience in the presence of external perturbations or internal
noise. One common approach to enhancing robustness is to build redundancies, such that
some components can fail without sacrificing function. Another approach is to transition from
deterministic algorithms to probabilistic or randomized algorithms [76], which are only
guaranteed to perform well on a task with some probability; the algorithmic challenge, then,
is to ensure that this probability is very high. This approach is also becoming popular today as
computing devices are getting smaller [77], since miniaturization often sacrifices reliability.

The brain has a remarkable ability to remain functional across a wide range of external
conditions and internal noise. For example, >80% of all dopaminergic neurons must be lost
from the substantia nigra before the onset of motor symptoms in patients with Parkinson’s
disease [78,79]. In the pruning example, we measured robustness to such node loss. Internal
components themselves can also be highly unreliable; for example, many synapses have failure
rates >60% [80,81]. Robustness can also be viewed in terms of maintaining an invariant. For
example, neurons in primary visual cortex show similar line orientation tuning despite different
stimulus strengths or visual contrast [82]; similarly, divisive normalization in olfactory circuits
helps tune neural responses to be invariant to odor concentration [83].

While engineers do often think about building networks that are robust to external perturba-
tions, it is less common to build reliable systems using internal components that are individually
70 Trends in Cognitive Sciences, January 2018, Vol. 22, No. 1



very noisy. Constructing network architectures that remain responsive despite both external
and internal perturbations is thus a primary challenge in network design.

Adaptation
Adaptation provides a measure of how well network performance (i.e., efficiency and robustness)
changes in response to changing inputs or environments. This often requires modifying network
topologies or connection strengths to better reflect new input or environmental statistics.

Neural systems are lionized for their ability to modify connection topologies and connection
strengths based on experience [42,84–86]. In the pruning example, starting from a highly
connected network, input activity was used to determine the most appropriate connections to
keep; that is, the topology of the network was sculpted to reflect the structure of the input. More
generally, while the rules regulating synaptic plasticity and synaptic renormalization [87] have
been the subject of intense interest, less understood is how changes in local connectivity,
brought about by changes in activity, are integrated into and influence global network structure.
Some examples include the study of how heterogeneity in input probability can help balance
excitation and inhibition [88] and how autaptic connections (i.e., self-edges) affect bursting
behavior in network [89]. Computationally, adaptation remains a major challenge, especially in
non-stationary or life-long machine learning applications [90,91], where systems are not tuned
to one fixed task, but are rather autonomous.

Online Operation
Online operation is a requirement where input–output responses are calculated in real time,
usually with little-to-no ability to pause for future data or to refer to previous data [92–94]. This
contrasts with offline operation, which assumes that data can be aggregated together and
complex operations can be performed on the entire dataset at once.

In the pruning example, inputs were provided one at a time, which necessitated a simple use it
or lose it-based algorithm. In computer science, online algorithms are critical in many appli-
cations, for example, on the Internet when routing large volumes of live traffic, or in sensor
networks, where each mobile device may be limited in their ability to store and analyze large
amounts of data. Online algorithms only process a tiny handful of data at a time, which restricts
the complexity of computations that can be performed but provides large benefits in terms of
memory and speed. In the brain, there is likely a continuum in this regard, where a small portion
of previous data (e.g., memories [95]) may be retrieved or fed back to determine the appropriate
response to a new input. The main challenge of online algorithms is to approximate the
performance of offline algorithms, despite having less time or fewer computing resources.

Scalability
Scalability is a property stating that an algorithm can solve a problem in a small or large network
with similar computational logic.

Scalability is a common evolutionary byproduct, since it is often easier to build off an existing
circuit to solve a more complex problem, as opposed to redesigning an entirely new circuit from
scratch [96,97]. Examples include evolutionary scaling of neural components [98] and Rentian
scaling, demonstrating similarities in computer chip architectures and neural circuits [99] (see
also [100]). Furthermore, many circuit motifs are conserved across species and brain areas,
indicating that similar computational logic may be used to solve information processing
problems in small and large brains. In engineering, one common technique used to enhance
scalability is to use distributed algorithms; the lack of reliance on a centralized controller means
Trends in Cognitive Sciences, January 2018, Vol. 22, No. 1 71



that individual nodes, implementing the same logic, can be added to a network to scale the
computation to a higher dimension.

Importantly, these goals may be at odds with one other. For example, highly efficient systems
may not be as robust to perturbations, nor as flexible in response to changing environments. A
key network design challenge is to determine how best to compromise between these criteria.

Potential Future Directions
Where else may a network design perspective provide new insights into circuit development
and structure? Below, we describe three potential areas of joint investigation by neuroscientists
and computer scientists that use the principles described above to motivate biological and
computational questions.

Role of Silent Synapses during Development
Early formation of AMPA-silent synapses are vital for normal circuit development [101]. Silent
synapses are those for which a presynaptic action potential fails to evoke a detectable
postsynaptic signal in the receiving cell, despite being physically present. AMPA-silent synap-
ses lie in a transitory state; they can be activated and integrated into existing pathways if
recruited by activity, or irreversibly pruned otherwise [101–103]. The precision of this transition
is vital, as premature or delayed transitioning of silent synapses has been implicated in several
developmental pathologies [104]. While the molecular mechanisms of silent synapses have
been intensely investigated [105], many details of this process remain elusive, including how
and when silent synapses transition to different states and what affect these local decisions
have on circuit function and topology. State- or condition-specific silencing or activation of
synapses may enable information rerouting or signal amplification in neural networks. However,
without tools that enable selective control of cell-type specific synapses, it will be difficult for
neuroscientists to understand how silent synapses can regulate network output.
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Figure 4. Computational Role of Silent Synapses. (A) Schematic showing how varying levels of network activity over
time modulates the state of an individual synapse. Sustained, enhanced activity drives the synapse to become active,
whereas periods of low activity causes the synapse to be silenced. (B) Network-level effects at three stages of network
activity (baseline, active, and silent), showing how a population of synapses may change state depending on network
activity, thus altering information flow. Red arrows indicate synapses that are silent; green arrows indicate synapses that
are active. (C) Markov transition diagram depicting three synapse states. Each state has an associated cost to maintain:
active synapses are most expensive, silent synapses less so, and pruned synapses are free. The arrows indicate possible
transitions between states.
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One way to investigate this, borrowed from engineering thinking, is to view a synapse abstractly
as a three-state Markov chain: active $ silent ! pruned (Figure 4). Each state has an associ-
ated cost to maintain: pruned synapses are ‘free’, but active synapses are more metabolically
costly to maintain than silent synapses due to additional neurotransmitter release, protein
synthesis, etc. The Markov model has three transition probabilities, and the goal is to under-
stand how these transition probabilities are modulated by activity on the network and how they
affect network adaptation. For example, the network could keep all synapses active at all times,
but this might be energetically wasteful during times with low-volume traffic. In the mature brain,
synapses may also fluctuate between active and silent states, controlled not by postsynaptic
receptor content but by modulation of release probability [106]. These fluctuations may provide
an opportunity for rerouting information flow without more costly anatomical rearrangements.
The metrics discussed above could then be used to understand the trade-offs that different
transitions strategies provide.

The notion of a ‘silent connection’ – one that is physically present but not used [106] – has been
uncommon in engineering, but their use may enable more computationally flexible networks
with the same physical substrate. State-dependent, rapidly reconfigurable networks may also
be useful in designing field-programmable gate arrays (FGPAs), or in deep learning applications
when the distribution of the input data could change over time [90].

Spontaneous Activity for Network Development and Maintenance
Spontaneous neural activity plays a critical role in guiding and refining connections during
development [107,108] and in maintaining and renormalizing synaptic weights during quies-
cent periods [109]. Spontaneous activity can be generated at the earliest stages of sensory
processing and propagated across the brain [110,111], or it can be generated by intrinsic
activity in the network, as occurs in the neocortex [112–115]. The necessity of spontaneous
activity for neural network maintenance and function is not well understood. Is spontaneous
activity truly noise, or does it represent offline processing that naturally occurs in large recurrent
networks? Indeed, there is a strong relationship between sensory-evoked patterns of activity
and spontaneous activity at rest [116,117], suggesting that the patterns of synaptic connec-
tivity provide a constraint to sequences of neural activity generated internally or through external
triggers. It is also possible that spontaneous fluctuation of component activity is required for
biological systems built of inherently unstable chemical (proteins, lipids, and nucleic acids)
parts; however, systematic manipulation of spontaneous activity in engineered networks might
reveal otherwise unexpected functions.

For example, in engineered systems, spontaneous activity is rarely used to construct networks
but is commonly used as a maintenance and monitoring tool. In many applications, short
messages (called keep-alive messages) are sent from one node (mobile device, or server) to
another. These messages are used to check connection status and preserve connections from
decay. One challenge is to adjust the frequency of these messages so they do not overburden
the network nor interfere with regular activity (sensory-evoked stimuli). Spontaneous activity
may also be helpful in neural networks to initialize parameters, which are later fine tuned using
labeled data [118], or to encode priors that help the network anticipate likely future stimuli [119].

Computational Primitives across Multiple Scales
Networksareoftendesigned modularly,consistingofcollectionsofnodes (neurons) that interact in
stereotyped ways, referred to as computational primitives [120,121] (Figure 5). We can consider a
computational primitive at multiple levels; as pairs of contacts (A is connected to inhibitory neuron
type B); as a small group of neurons (A is connected to inhibitory neuron type B, B is connected to
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Figure 5. Examples of Computational Primitives in the Nervous System. Green nodes depict excitatory neurons. Red nodes depict inhibitory neurons. The
thickness of the arrow (connection) depicts the strength of connection. (A) Point-to-point connections, where one neuron is strong enough to directly drive another. (B)
Convergent connections, where a downstream neuron responds only to coincident activation of many input neurons. (C) Disynaptic inhibition, where activation of one
neuron is sufficient to activate a neuron that inhibits a downstream neuron. (D) Signal amplification and feedback, where a series of excitatory neurons are amplified and
then feedback to inhibit the first neuron. (E) Inhibition of inhibition, where an excitatory input neuron drives a sequence of inhibitory nodes to influence the activity of a
downstream neuron. High basal activity of intermediate inhibitory nodes is required for the functionality of this motif. (F) Expanded inhibitory series, with multiple layers of
inhibition, are also ubiquitous in neural circuits.
C, and A is never connected to C); or as larger assemblies composed of dozens to hundreds of
neurons [122,123], such as the crustacean stomatogastric ganglion [124] as well as small
interacting groups of inhibitory neurons in the neocortex, for example, the vasoactive intestinal
polypeptide (VIP) to somatostatin neuron inhibitory motif observed across neocortical areas [125–
127]. At a broader scale, the mammalian cortical column has been considered a computational
primitive whose structural conservation and evolutionary expansion across multiple specialized
regions of the neocortex indicates its utility [128].

Similarities between computational primitives observed at both small and multicellular scales in
the brain can help us understand the function of these network structures. Take for example
directional, serial inhibition (inhibition of inhibition [129], or inhibition of inhibition of inhibition)
between GABAergic neurons in the neocortex or in the basal ganglia. Networks using serial
inhibition require activity in some downstream inhibitory nodes, since inhibiting something that
is not itself active will have no effect. However, persistent inhibitory firing is energetically costly.
What are the computational advantages and disadvantages of serial inhibition compared, for
example, to direct excitation? One potential answer is that serial inhibition provides a way to
expand the dynamic range of output, where it can be both increased and decreased according
to task demands and network state [106].

There are myriad examples of other computational primitives that are highly conserved in the
brain (Figure 5) and that have a parallel in engineered systems, where they are built with
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Outstanding Questions
In addition to pruning, how do other
forms of structural plasticity that occur
throughout the lifetime of an organism
affect circuit structure? Can pruning
strategies be used to improve the per-
formance of machine learning
networks?

Are pruning rates perturbed in neuro-
developmental disorders, such as
autism spectrum disorders (too many
synapses) or Rett syndrome (too few
synapses), or in adults that have learn-
ing deficiencies? What is the formal
relationship between over-connectivity
and signal interference (i.e., how much
is too much)?

What role do silent synapses play dur-
ing development, and how do their
transitions between states (active,
silent, or pruned) facilitate network
adaptation while keeping costs down?
What technologies need to be devel-
oped that enable selective control of
cell-type specific synapses? Can these
strategies be used to improve life-long
learning for machine learning
algorithms?

What role does spontaneous activity
play for network maintenance and
monitoring? How is network structure
perturbed in the absence of spontane-
ous activity, or when its frequency
changes?

What are the advantages and disad-
vantages of different computational
primitives, or network motifs, when
designing a network? Why are there
so many seemingly wasteful motifs
(inhibition of inhibition, inhibition of inhi-
bition of inhibition) in neural circuits?
Can we build a library of circuit motifs
that can be used to classify circuit
function and computational strategies
across different brain regions and spe-
cies? Can we use engineered circuits
to evaluate the costs and benefits of
each motif?
particular information processing features in mind. These shared primitives include feedforward
activation and parallel motifs [130] for amplification of weak signals, gain control, or band-pass
filtering, and feedback connections for modulatory control. Moreover, the logic of these motifs
are strikingly similar to the complex operations that are carried by computers using Boolean
operatives – for example, NAND, OR, and NOT gates – which serve as building blocks for all
complex operations in electrical circuits. An understanding of the optimizations performed by
these motifs may on the one hand help neuroscientists structure specific hypotheses about
circuit organization and function across brain areas. On the other hand, using computational
primitives as building blocks may provide new constraints for designing network topologies
with specific objectives in mind, such as pruning in deep learning networks to extract features or
prioritize information flow, or improving robustness in routing networks; the function of these
motifs maybe also be better understood by their application within machine learning
applications.

Concluding Remarks
In this perspective, we argued that principles from neural circuit construction can be used to
inform the design of engineered networks; at the same time, engineering perspectives can also
raise new testable hypotheses about neural circuit function. We grounded this claim in a recent
example, where synaptic pruning was used to devise a novel distributed network design
algorithm with marked advantages over conventional design strategies. This approach also led
to a new hypothesis about how different pruning rates affect circuit topology. We then
described five principles (efficiency, robustness, adaptation, online operation, and scalability)
shared between the two domains, and highlighted potential future problems where a joint
perspective may benefit both computer scientists and experimentalists (see Outstanding
Questions). While we focused here on circuit changes during development, structural plasticity
occurs throughout the lifetime of an organism; we hope some of the ideas presented here may
also be useful towards their study [131].

Critical to this joint perspective is identifying the right level of abstraction in which to view circuit
function. For example, in applying pruning rules to network construction, we generalized
information flow so that individual nodes were sufficient to pass signals, in contrast to the
brain, where postsynaptic firing typically requires convergent activity from many presynaptic
inputs. Although abstraction always carries with it some loss, it can help identify and evaluate
the role of general operating principles that might otherwise be hard to identify and properly
weighted amongst a broad array of biophysical and anatomical measurements. Indeed, it is
important to emphasize that our goals are not to replicate brain function by faithful recapitula-
tion of neurophysiological properties [132]. Rather, we hope that analysis of brain-inspired
circuit structures and design strategies can provide inspiration for novel algorithms not typically
used in engineering. Conversely, evaluating network design strategies based on their efficiency,
robustness, and costs – a perspective familiar to engineers and network scientists – may reveal
new principles guiding circuit organization, including their information–transformation proper-
ties and their cost–benefit trade-offs.

To date, the relationship between network design scientists and neurobiologists has mostly
consisted of two one-way streets. We hope this perspective will help enable a rich and
reciprocal exchange of ideas between these two domains, building numerous and mutually
beneficial interactions.
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